Skip to main content
Log in

Application of a Simple Statistical Spalling Model for the Analysis of High-Temperature, Cyclic-Oxidation Kinetics Data

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A statistical cyclic-oxidation model is presented. This model gives analytical formulas to assess stabilized metal consumption in cyclic-oxidation experiments. The model is first detailed, then applied to se eral Ni-base superalloys, which form an α-alumina scale during oxidation above 1000C. A new map is introduced in order to compare the cyclic-oxidation beha ior of these alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. A. Barret, NASA Lewis Research Center, Cleûeland, NASA-TN-D-8132 E-8432 (1976).

  2. J. L. Smialek, Metall. Mater. Trans. A 9A, 309–320 (1978).

    Google Scholar 

  3. C. E. Lowell, J. L. Smialek, and C. A. Barret, High Temperature Corrosion, Proceedings of the International Conference, San Diego, CA, March 2–6, 1981 (National Association of Corrosion Engineers, 1983), pp. 219–226.

  4. C. E. Lowell, C. A. Barrett, R. W. Palmer, J. V. Auping, and H. B. Probst, Oxid. Met. 36, 81–112 (1991).

    Google Scholar 

  5. J. S. Smialek and J. V. Auping, Oxid. Met. 57, 559–581 (2002).

    Google Scholar 

  6. D. Monceau and B. Pieraggi, Oxid. Met. 50, 477–493 (1998).

    Google Scholar 

  7. W. J. Quadakkers, Werkst. Korros. 41, 659–668 (1990).

    Google Scholar 

  8. I. G. Wright, A. Pint, L. M. Hall, and P. F. Tortorelli, Lifetime Modelling of High Temperature Corrosion Processes, M. Schutze, W. J. Quadakkers, and J. R. Nicholls, eds. (The Institute of Materials, London, 2001), pp. 339–358.

    Google Scholar 

  9. B. Escoube's, Probabilités et Statistiques à l'Usage des Physiciens (Ellipses, Paris, France, 1998).

    Google Scholar 

  10. K. S. Chan, N. S. Cheruvu, and G. R. Leverant, in International Gas Turbine and Aero-engine Congress and Exhibition, Stockholm (ASME, Materials Park, 1998).

    Google Scholar 

  11. J. L. Smialek and B. K. Tubbs, Metall. Mater. Trans. A 26A, 427(1995).

    Google Scholar 

  12. C. Sarioglu, J. R. Blachere, F. S. Pettit, G. H. Meier, J. L. Smialek, and C. Mennicke, Mater. Sci. Forum 405, 251–254 (1997).

    Google Scholar 

  13. M. P. Brady, B. A. Pint, P. F. Tortorelli, I. G. Wright, and R. J. Hanrahan, Mater. Sci. Technol. II, 230–325 (2000).

    Google Scholar 

  14. B. Pint, I. Wright, W. Lee, Y. Zhang, K. Prubner, and K. Alexander, in Thermal Barrier Coating Workshop, NASA Tech. Rep. 19980214845 (1997), pp. 109–125.

  15. J. L. Smialek, Metall. Mater. Trans. A 22A, 739–752 (1991).

    Google Scholar 

  16. J. G. Smeggil and N. S. Bornstein, Mater. Sci. Eng. 87, 261(1987).

    Google Scholar 

  17. D. I. Jayne and J. L. Smialek, NASA Res. Center, NASA-TM-106289 (1993), p. 15.

  18. J. L. Smialek, D. T. Jayne, J. C. Schaeffer, and W. H. Murphy, Thin Solid Films, pp. 285–292 (1994).

  19. P. Y. Hou, K. Prussner, D. H. Fairbrother, J. G. Roberts, and K. B. Alexander, Scripta Metall. Mater. 40, 241–247 (1999).

    Google Scholar 

  20. H. J. Grabke, G. Kurbatov, and H. J. Schmultzer. Oxid. Met. 43, 97–114 (1995).

    Google Scholar 

  21. H. J. Grabke, D. Wiemer, and H. Vielhaus, Appl. Surf. Sci. 47, 243–250 (1991).

    Google Scholar 

  22. M. W. Brumm and H. J. Grabke, Corros. Sci. 34, 547(1993).

    Google Scholar 

  23. K. Bungradt, G. Lehnert, and H. W. Meinhardt, US Patent No. 3 819 338(1974).

  24. G. R. Krishna, D. K. Das, V. Singh, and S. V. Joshi, Mater. Sci. Eng. A251, 40–47 (1998).

    Google Scholar 

  25. A. L. Purvis and B. M. Warnes, Surface Coat. Technol. 146–147, 1–6 (2001).

    Google Scholar 

  26. I. M. Allam, H. C. Akuezue, and D. P. Whittle, Oxid. Met. 14, 517–530 (1980).

    Google Scholar 

  27. G. J. Tatlock and T. J. Hurd, Oxid. Met. 22, 201–226 (1984).

    Google Scholar 

  28. W. T. Wu, A. Rahmel, and M. Schorr, Oxid. Met. 22, 59–81 (1984).

    Google Scholar 

  29. J. G. Fountain, F. A. Golightly, F. H. Scott, and G. C. Wood, Oxid. Met. 10, 341–345 (1976).

    Google Scholar 

  30. E. J. Felten, Oxid. Met. 10, 23–28 (1976).

    Google Scholar 

  31. J. A. Haynes, Y. Zhang, W. Y. Lee, B. A. Pint, I. G. Wright, and K. M. Cooley, Eleûated Temperature Coatings: Science and Technology III (The Minerals, Metals and Materials Society, Warrendale, PA, 1999).

    Google Scholar 

  32. Y. Zhang, J. A. Haynes, W. Y. Lee, I. G. Wright, B. A. Pint, K. M. Cooley, and P. K. Liaw, Metall. Trans. 2000, submitted.

  33. J. H. W. de Wit, and P. A. van Mamen, Mater. Sci. Forum 154, 109–118 (1994).

    Google Scholar 

  34. H. Hindam and D. P. Whittle, Oxid. Met. 18, 245–284 (1982).

    Google Scholar 

  35. M. W. Brumm and H. J. Grabke, Corros. Sci. 33, 1677–1690 (1992).

    Google Scholar 

  36. H. E. Evans and R. C. Lobb, Corros. Sci. 24, 209–222 (1984).

    Google Scholar 

  37. J. Jedlinski, M. J. Bennet, and H. E. Evans, Mater. High Temp. 21 (1994).

  38. P. W. G. Simpson and H. E. Evans, Nuclear Fuel Performance, Vol.1 (British Nuclear Energy Society, London, 1985).

    Google Scholar 

  39. K. S. Chan, Metall. Mater. Trans. A 28, 411–422 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poquillon, D., Monceau, D. Application of a Simple Statistical Spalling Model for the Analysis of High-Temperature, Cyclic-Oxidation Kinetics Data. Oxidation of Metals 59, 409–431 (2003). https://doi.org/10.1023/A:1023004430423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023004430423

Navigation