Skip to main content
Log in

The Role of Quantization Effects on the Operation of 50 nm MOSFETs, 250 nm FIBMOS Devices and Narrow-Width SOI Device Structures

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We investigate the role of the quantum-mechanical space-quantization effects on the operation of a 50 nm MOSFET device, an asymmetric 250 nm FIBMOS device and a narrow-width SOI device structure. We find that space-quantization effects give rise to larger average displacement of the carriers from the interface proper and lower sheet electron density in both the regular and the asymmetric MOSFET device structures. The effect is even more pronounced in the narrow-width SOI device due to the presence of a two-dimensional confinement (both vertical and along the width direction). The reduction in the sheet electron density, in turn, gives rise to shift in the devices threshold voltage, on the order of 100–200 mV, depending upon the device structure being investigated. This leads to 20–40% decrease of the device on-state current which depends upon the gate bias. Hence, to properly describe the operation of future ultra-small devices it is mandatory to incorporate quantum-mechanical space quantization effects into existing classical device simulators (drift-diffusion, hydrodynamics or Monte Carlo particle-based simulators) since first-principle quantum-mechanical calculations (direct solution of the many-body Schrödinger equation, Green's functions method, etc.) are still limited to one-dimensional structures and rely on a number of approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramo A., Cardin A., Selmi L., and Sangiorgi E. 2000. IEEE Trans. Electron Dev. 47: 1858.

    Google Scholar 

  • Akis R., Milicic S., Ferry D.K., and Vasileska D. 2001. In Proceedings of the 4th International Conference on Modeling and Simulation of Microsystems. Computational Publications, Boston, p. 550.

  • Asenov A., Slavcheva G., Brown A.R., Davies J.H., Saini S. 2001. IEEE Trans. Electron Dev. 48: 722.

    Google Scholar 

  • Assad F., Ren Z., Vasileska D., Datta S., and Lundstrom M. 2000. IEEE Trans. Electron Dev. 44: 232.

    Google Scholar 

  • Bohm D. 1952a. Phys. Rev. 85: 166.

    Google Scholar 

  • Bohm D. 1952b. Phys. Rev. 85: 180.

    Google Scholar 

  • Buti T.N., Ogura S., Rovedo N., and Tobimatsu K. 1991. IEEE Trans. Electron Devices 38: 1757.

    Google Scholar 

  • Buttiker M. 1988. IBM J. Res. Develop. 32: 63.

    Google Scholar 

  • de Broglie L. 1926. C. R. Acad. Sci. Paris 183: 447.

    Google Scholar 

  • de Broglie L. 1927. C. R. Acad. Sci. Paris 184: 273.

    Google Scholar 

  • Demkov A.A., Zhang X.D., Loechelt H. 2001. VLSI Design 13: 135.

    Google Scholar 

  • Dewdney C. and Hiley B.J. 1982. Found. Phys. 12: 27.

    Google Scholar 

  • Duncan A., Ravaioli U., and Jakumeit J. 1998. IEEE Trans. Electron Dev. 45: 867.

    Google Scholar 

  • Ferry D.K. 1976. Phys. Rev. B 14: 1605.

    Google Scholar 

  • Ferry D.K. 2000. Superlattices and Microstructures 27: 61.

    Google Scholar 

  • Feynman P. and Kleinert H. 1986. Phys. Rev. A 34: 5080.

    Google Scholar 

  • Formicone G.F., Saraniti M., Vasileska D.Z., and Ferry D.K., IEEE Trans. Electron Dev. 49: 125.

  • Gardner C.L. 1994. SIAM J. Appl. Math. 54: 409.

    Google Scholar 

  • Gross W.J., Vasileska D., and Ferry D.K. 2000. VLSI Design 10: 437.

    Google Scholar 

  • Herring C. and Vogt E. 1956. Phys. Rev. 101: 944.

    Google Scholar 

  • Hockney R.W. and Eastwood J.W. 1981. Computer Simulation Using Particles. McGraw-Hill, Maidenhead.

    Google Scholar 

  • Jacoboni C. and Reggiani L. 1983. Rev. Modern Phys. 55: 645.

    Google Scholar 

  • Kan E.C., Narayan V., and Pei G. 2002. Journal of Computational Electronics, in press.

  • Knezevic I., Vasileska D., Akis R., Kang J., He X., and Schroder D. K. 2002a. Physica B 314: 386.

    Google Scholar 

  • Knezevic I., Vasileska D., and Ferry D.K. 2002. IEEE Trans. Electron. Dev. 49: 1019, in press.

    Google Scholar 

  • Knezevic I., Vasileska D., He X., Schroder D.K., and Ferry D.K. 2002b. Journal of Computational Electronics, in press.

  • Landauer R. 1957, 1970. IBM J. Res. Develop 1: 233; Philos. Mag. 21: 863.

    Google Scholar 

  • Laux S.E. 1996. IEEE Trans. CAD Integr. Circ. Syst. 15: 1266.

    Google Scholar 

  • Ma J., Liang H.-B., Pryor R.A., Cheng S., Kaneshiro M.H., Kyono C.S., and Papworth K. 1997. IEEE Trans. Very Large Scale Integration (VLSI) Systems 5: 352.

    Google Scholar 

  • Madelung E. 1926. Z. Phys. 40: 322.

    Google Scholar 

  • Saraniti M., Tang J., Goodnick S., and Wigger S. 2002. Journal of Computational Electronics, in press.

  • Stäadele M. Tuttle B.R., and Hess K. 2001. J. Appl. Phys. 89: 348.

    Google Scholar 

  • St¨adele M. et al. 2000. Superlatt. Microst. 27: 405.

    Google Scholar 

  • Takeda H., Mori N., and Hamaguchi C. 2002. Journal of Computational Electronic, in press.

  • Tsuchiya H., Winstead B., and Ravaioli U. 2001. VLSI Design 13: 335.

    Google Scholar 

  • Vasileska D. and Ferry D.K. 1998. In Technical Proceedings of the First International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators. Computational Publications, Boston, p. 408.

    Google Scholar 

  • Vasileska D., Gross W.J., and Ferry D.K. 1998. In Extended Abstracts of 1998 Sixth InternationalWorkshop on Computational Electronics (IWCE-6), Osaka, Japan, 19–21 Oct. 1998, pp. 259–262.

  • Vasileska D., Schroder D.K., and Ferry D.K. 1997. IEEE Trans. Electron Dev. 44: 584.

    Google Scholar 

  • Vignaud D., Etchin S., Liao K.S., Musil C.R., Antoniadis D.A., and Melngailis J. 1992. Appl. Phys. Lett. 60: 2267.

    Google Scholar 

  • Watling J.R., Brown A.R., and Asenov A. 2002. Journal of Computational Electronics, in press.

  • Usuki T., Saito M., Takatsu M., Kiehl R.A., and Yokoyama N., Phys. Rev. B 52: 8244.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasileska, D., Knezevic, I., Akis, R. et al. The Role of Quantization Effects on the Operation of 50 nm MOSFETs, 250 nm FIBMOS Devices and Narrow-Width SOI Device Structures. Journal of Computational Electronics 1, 453–465 (2002). https://doi.org/10.1023/A:1022980703489

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022980703489

Navigation