Skip to main content
Log in

Retinal function in the von Hippel-Lindau disease

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose: To assess the retinal function in patients with von Hippel-Lindau disease (VHL). Patients: Studies were undertaken in 12 patients (17 eyes) with detected VHL gene mutation and 12 normal healthy controls (17 eyes). Methods: Pattern ERG (PERG), standard flash electroretinogram (ERG) recordings were performed in accordance with the International Society for Clinical Electrophysiology of Vision (ISCEV) standards. Results: In VHL patients, electrophysiological statistically significant changes were found. In PERG examination, increased latency of P50 was found in the total VHL group (p<0.02) and in the VHL subgroup with retinal angiomas (p<0.04). In ERG examination, photopic b-wave latency was increased in the total VHL group (p<0.03) and also in the VHL subgroup without retinal angiomas (p<0.05). In OPs, latency increase of OP2, OP3 waves and reduced amplitude of OP3 wave in the total VHL group (OP2 latency, p<0.05; OP3 latency, p<0.01; OP3 amplitude, p<0.03) and in the VHL subgroup with retinal angiomas (OP2 latency, p<0.02; OP3 latency, p<0.008; OP3 amplitude, p<0.02) were obtained. Conclusions: It can be hypothesized that dysfunction of the inner retinal layer is present in individuals with VHL disease even in patients without retinal angiomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maher ER, Iselius L, Yates JRW, et al. Von Hippel-Lindau disease: a genetic study. J Med Genet 1991; 28: 443–7.

    Google Scholar 

  2. Fearon E. Human cancer syndromes: clues to the origin and nature of cancer. Science 1997; 278: 1043–50.

    Google Scholar 

  3. Latif F, Tory K, Gnarra J, et al. Identyfication of the von Hippel-Lindau disease tumor suppressor gene. Science 1993; 260: 1317–20.

    Google Scholar 

  4. Chan Chi-Chao, Vortmeyer AO, Chew EY, Green WR, Matteson DM, Shen De F, Linehan WM, Lubensky IA, Zhuang Z. VHL gene deletion and enhanced VEGF gene expression detected in the stromal cells of retinal angioma. Arch Ophthalmol 1999; 117: 625–30.

    Google Scholar 

  5. Siemeister G, Weindel K, Mohrs K, et al. Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. Cancer Res 1996; 56: 2299–301.

    Google Scholar 

  6. Iliopoulos O, Levy AP, Jiang C, Kaelin WG, Goldberg MA. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 1996; 93: 10595–99.

    Google Scholar 

  7. Grossniklaus H, Thomas J, Vigneswaran N, Jarret W III. Retinal hemangioblastoma: a histologic, immunohistochemical, and ultrastructural evaluation. Ophthalmology 1992; 99: 140–5.

    Google Scholar 

  8. Nicholson D. Capillary haemangioma of the retina and von Hippel-Lindau disease. In: Ogden T, Schachat A, eds. Retina Vol 1. St Louis, MO: Mosby; 1994: 633–40.

    Google Scholar 

  9. Webster A, Maher E, Moore A. Clinical characteristics of ocular angiomatosis in von Hippel-Lindau disease and correlation with germline mutation. Arch Ophthalmol 1999: 117: 371–8.

    Google Scholar 

  10. Green WR. Retina: capillary hemangioma. In Spencer WH, ed. Ophthalmic pathology: An Atlas and Textbook. Philadelphia, PA: WB Saunders Co, 1996: 709–18.

    Google Scholar 

  11. Jakobiec FA, Font RL, Johnson FB. Angiomatosis retinae: An ultrastructural study and lipid analysis. Cancer 1976; 38: 2042–56.

    Google Scholar 

  12. Marmor MF, Zrenner E. Standard for clinical electroretinography (1999 update). Doc Ophthalmol 1999; 97: 143–56.

  13. Bach M, Hawlina M, Holder GE, Marmor MF, Meigen T, Vaegan, Miyake Y. Standard for pattern electroretinography. Doc Ophthalmol 2000; 101: 35–49.

    Google Scholar 

  14. Maffei L, Fiorentini A. Electroretinographic responses to alternative gratings before and after section of the optic nerve. Science 1981; 211: 953–5.

    Google Scholar 

  15. Arden GB, Vaegan, Hoog CR. Clinical and experimental evidence that pattern electroretinogram (PERG) is generated in more proximal layers than the focal electroretinogram (FERG). Ann NY Acad Sci 1982; 388: 580–607.

    Google Scholar 

  16. Holder EG. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retinal Eye Res 2001; 20(4): 531–61.

    Google Scholar 

  17. Xu XJ, Karwoski J. Current source density analysis of retinal field potentials. II Pharmacological analysis of the b-wave and M-wave. J Neurophysiol 1994; 72: 96–105.

    Google Scholar 

  18. Dick E, Miller RF. Light-evoked potassium activity in the mudpuppy retina. Its relationship to the b-wave of the electroretinogram. Brain Res 1978;154: 388–94.

    Google Scholar 

  19. Joussen MA, Kirchhof B. Solitary peripapillary hemangioblastoma. A histopathological case report. Acta Ophthalmol Scand 2001; 79: 83–7.

    Google Scholar 

  20. Ogden TE. The oscillatory waves of the primate electroretinogram. Vision Res 1973; 13: 1059–74.

    Google Scholar 

  21. Wachtmeister L. Oscillatory potentials in the retina: what do they reveal. Prog Retinal Eye Res 1998; 17: 485–521.

    Google Scholar 

  22. Parisi V, Uccioli L, Monticone G, Parisi L, Manni G, et al. Electrophysiological assessment of visual function in IDDM patients. Electroencephalogr Clin Neurophysiol 1997; 104: 171–9.

    Google Scholar 

  23. Chung NH, Kim SH, Kwak MS. The electroretinogram sensitivity in patients with diabetes. Korean J Ophthalmol 1993; 7(2): 43–7.

    Google Scholar 

  24. Yoshida A, Kojima M, Ogasawara H, Ishiko S. Oscillatory potentials and permeability of the blood-retinal barrier in noninsulin-dependent diabetics patients without retinopathy. Ophthalmology 1991; 98(8): 1266–71.

    Google Scholar 

  25. Van der Torren K, Mulder P. Comparison of the second and third oscillatory potentials with oscillatory potential power in early diabetic retinopathy. Doc Ophthalmol 1993; 83(2): 111–8._

    Google Scholar 

  26. Peppe A, Stanzione P, Pierelli F, De Andelis D, Pierantozzi M, Bernardi G. Visual alterations in de novo Parkinson's disease: Pattern electroretinogram latencies are more delayed and more reversible by levodopa than are visual evoked potentials. Neurology 1995; 45: 1144–8.

    Google Scholar 

  27. Bartel P, Blom M, Robinson M, van der Meyden C, Sommer DK, Becker P. The effect of levodopa and haloperidol on flash and pattern ERGs and VEPs in normal humans. Doc Ophthalmol 1990; 76(1): 55–64.

    Google Scholar 

  28. Graham SL, Klistorner A. Electrophysiology: A review of signal origins and applications to investigating glaucoma. Austr New Zealand J Ophthalmol 1998; 26: 71–85.

    Google Scholar 

  29. Reuther K, Kelner U. Inner retinal function in hereditary retinal dystrophies. Acta Anat 1998; 162: 169–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubiński, W., Krzystolik, K., Cybulski, C. et al. Retinal function in the von Hippel-Lindau disease. Doc Ophthalmol 106, 271–280 (2003). https://doi.org/10.1023/A:1022919631288

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022919631288

Navigation