Skip to main content
Log in

The influences of gas and electron temperatures on electron attachment in gas electrical discharges

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Various electron attachment processes are reviewed, emphasising the way in which the rates and products of some selected reactions vary with the attaching gas temperatureT g, the temperature,T e, and the energy of the attaching electrons. The examples illustrating the variety of reactions are the efficient dissociative attachment reaction to CCl4, attachment to SF6 which involves both dissociative and non-dissociative attachment, attachment to CHCl3 which requires activation energy, and attachment to CCl3Br which results in both Cl- and Br- product ions. A model has been presented which is able to quantitatively explain the difference influences ofT g andT e on the rates of some of these reactions. Also described are the unusually efficient attachment properties of the fullerene molecules C60 and C70 as revealed by our FALP experiments, noting that these molecules have potential importance as efficient suppressers of electrical breakdown through gases such as those used to insulate high voltage devices. We emphasise throughout this paper the importance of an understanding of the separate influences of gas and electron temperature on attachment reactions for the modelling of practical gas discharge media such as etchant plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.G. Christophorou:Atomic and Molecular Radiation Physics, Wiley, New York, 1971.

    Google Scholar 

  2. J. Janča, K. Navrátil, Z. Bochníček, and V. Peřina: Czech. J. Phys.45 (1995) 851.

    Article  ADS  Google Scholar 

  3. L.G. Christophorou, D.L. McCorkle, and A.A. Christodoulides: inElectron-Molecule Interactions and Their Applications, Vol. 1, Academic Press, New York, 1984, Chapter 6, p. 496.

    Google Scholar 

  4. E.W. McDaniel:Collision Phenomena in Ionized Gases, Wiley, New York, 1964.

    Google Scholar 

  5. H.S.W. Massey:Negative ions, Cambridge University Press, Cambridge, 1976.

    Google Scholar 

  6. D. Smith and N.G. Adams: J. Phys. B20 (1987) 4903.

    Article  ADS  Google Scholar 

  7. S.H. Alajajian and A. Chutjian: J. Phys. B20 (1987) 2117.

    Article  ADS  Google Scholar 

  8. J.M. Warman and M.C. Sauer Jr.: Int. J. Radiation Phys. Chem.3 (1971) 273.

    Article  Google Scholar 

  9. D. Smith and P. Španěl: Adv. At. Mol. Opt. Phys.32 (1994) 307.

    Google Scholar 

  10. D. Smith, C.R. Herd, and N.G. Adams: Int. J. Mass Spectrom. Ion Processes93 (1989) 15.

    Article  Google Scholar 

  11. D. Smith, N.G. Adams, and E. Alge: J. Phys. B17 (1984) 461.

    Article  ADS  Google Scholar 

  12. E. Alge, N.G. Adams, and D. Smith: J. Phys. B16 (1983) 1433.

    Article  ADS  Google Scholar 

  13. D. Smith, M.J. Church, and T.M. Miller: J. Chem. Phys.68 (1978) 1224.

    Article  ADS  Google Scholar 

  14. D. Smith, N.G. Adams, A.G. Dean, and M.J. Church: J. Phys. D8 (1975) 141.

    Article  ADS  Google Scholar 

  15. B.R. Rowe, J.C. Gomet, A. Canosa, C. Rebrion, and J.B.A. Mitchell: J. Chem. Phys.96 (1992) 1105.

    Article  ADS  Google Scholar 

  16. T.M. Miller, A.E. Stevens-Miller, and J.F. Paulson: J. Chem. Phys.100 (1994) 8841.

    Article  ADS  Google Scholar 

  17. D. Trunec, P. Španěl, and D. Smith: Contrib. Plasma Phys.34 (1994) 69.

    Article  ADS  Google Scholar 

  18. P. Španěl and D. Smith: Int. J. Mass. Spectrom Ion Processes129 (1993) 193.

    Article  ADS  Google Scholar 

  19. P. Španěl, S. Matejčík, and D. Smith: J. Phys B28 (1995) 2941.

    Article  ADS  Google Scholar 

  20. D.L. McCorkle, A.A. Christodoulides, L.G. Christophorou, and I. Szamrej: J. Chem. Phys.76 (1982) 753.

    Article  ADS  Google Scholar 

  21. H. Shimamori, Y. Tatsumi, Y. Ogawa, and T. Sunagawa: J. Chem. Phys.97 (1992) 6335.

    Article  ADS  Google Scholar 

  22. N.G. Adams, D. Smith, and C.R. Herd: Int. J. Mass Spectrom. Ion Processes84 (1988) 243.

    Article  Google Scholar 

  23. E. Alge, N.G. Adams, and D. Smith: J. Phys. B17 (1984) 3827.

    Article  ADS  Google Scholar 

  24. E.C.M. Chen, L.-R. Shuie, E.D. D’sa, C.F. Batten, and W.E. Wentworth: J. Chem. Phys.88 (1988) 4711.

    Article  ADS  Google Scholar 

  25. D. Klar, M.-W. Ruf, and H. Hotop: Chem. Phys. Lett.189 (1992) 448.

    Article  ADS  Google Scholar 

  26. M.S. Foster and J.L. Beauchamp: Chem. Phys. Lett.31 (1975) 482.

    Article  ADS  Google Scholar 

  27. S.G. Lias, J.E. Bartmess, J.F. Liebman, J.L. Holmes, R.D. Levin, and W.G.J. Mallard: Phys. Chem. Reference Data17 (1988) 1.

    Article  Google Scholar 

  28. J.A. Kerr: inCRC Handbook of Chemistry and Physics, 71st Edition (Editor R. Lide), CRC Press, Boca Raton, 1991, p. 9–86.

    Google Scholar 

  29. F.C. Fehsenfeld: J. Chem. Phys.53 (1970) 2000.

    Article  ADS  Google Scholar 

  30. D. Smith, P. Španěl, S. Matejčík, A. Stamatovic, T.D. Märk, T. Jaffke, and E. Illenberger: Chem. Phys. Lett.240 (1995) 481.

    Article  ADS  Google Scholar 

  31. P. Španěl, D. Smith, S. Matejčík, A. Kiendler, and T.D. Märk: Int. J. Mass Spectrom. Ion Processes167/168 (1997) 1.

    Article  ADS  Google Scholar 

  32. R.C. Haddon: Philos. Trans. R. Soc. Lond. A343 (1993) 53.

    Article  ADS  Google Scholar 

  33. M. Lezius, P. Scheier, and T.D. Märk: Chem. Phys. Lett.203 (1993) 232.

    Article  ADS  Google Scholar 

  34. S. Matejčík, T.D. Märk, P. Španěl, D. Smith, T. Jaffke, and E. Illenberger: J. Chem. Phys.102 (1995) 2516.

    Article  ADS  Google Scholar 

  35. D. Smith, P. Španěl, and T.D. Märk: Chem. Phys. Lett.213 (1993) 202.

    Article  ADS  Google Scholar 

  36. E. Tosatti and N. Manini: Chem. Phys. Lett.223 (1994) 61.

    Article  ADS  Google Scholar 

  37. J.M. Weber, M.-W. Ruf, and H. Hotop: Z. Physik D37 (1996) 351.

    Article  ADS  Google Scholar 

  38. P. Španěl and D. Smith: Chem. Phys. Lett.229 (1994) 262.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We dedicate this paper to Professor Jan Janča on the occasion of his sixtieth birthday in recognition of his major contributions to gas discharge physics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Španěl, P., Smith, D. The influences of gas and electron temperatures on electron attachment in gas electrical discharges. Czech J Phys 48, 1119–1134 (1998). https://doi.org/10.1023/A:1022897715606

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022897715606

Keywords

Navigation