Skip to main content
Log in

Dependence of Miniature Endplate Current on Kinetic Parameters of Acetylcholine Receptors Activation: A Model Study

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mathematical modeling was applied to study the dependence of miniature endplate current (MEPC) amplitude and temporal parameters on the values of the rate constants of acetylcholine binding to receptors (k+) when cholinesterase was either active or inactive. The simulation was performed under two different sets of parameters describing acetylcholine receptor activation–one with high and another with low probability (Pohigh and Polow) of receptor transition into the open state after double ligand binding. The dependence of model MEPC amplitudes, rise times, and decay times on k+ differs for set Polow and set Pohigh. The main outcome is that for set Pohigh, the rise time is significantly longer at low values of k+ because of the prolongation of ACh diffusion time to the receptor. For the set Polow, the rise time is shorter at low values of k1, which can be explained by the small probability of AChR forward isomerization after ACh binding and faster MEPC's peak formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Adams, P. R. 1981. Acetylcholine receptor kinetics. J. Membr. Biol. 58:161–174.

    PubMed  Google Scholar 

  2. Sheridan, R. E. and Lester, H. A. 1977. Rates and equilibria at the acetylcholine receptor of Electrophorus electroplaques. J. Gen. Physiol. 70:187–219.

    PubMed  Google Scholar 

  3. Land, B. R., Harris, V. W., Salpeter, E. E., and Salpeter, M. M. 1984. Diffusion and binding constants for acetylcholine derived from the decay phase of miniature endplate currents. Proc. Natl. Acad. Sci. USA 81:1594–1598.

    PubMed  Google Scholar 

  4. Anderson, C. R. and Stevens, C. F. 1973. Voltage clamp analysis of acetylcholine-produced end-plate current fluctuations at frog neuromuscular junction. J. Physiol. (Lond.) 235: 655–691.

    Google Scholar 

  5. Colquhoun, D. and Sakmann, B. 1985. Fast events in single channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J. Physiol. (Lond.) 369:501–557.

    Google Scholar 

  6. Franke, C., Hatt, H., Parnas, H., and Dudel, J. 1991. Kinetic constants of the acetylcholine (ACh) receptor reaction deduced from the rise in open probability after steps in ACh concentration. Biophys. J. 60:1008–1016.

    PubMed  Google Scholar 

  7. Sine, S. M., Claudio, T., and Sigworth, F. J. 1990. Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts. J. Gen. Physiol. 96:395–437.

    PubMed  Google Scholar 

  8. Sine, S. M. and Steinbach, J. H. 1986. Activation of acetylcholine receptors on clonal mammalian BC3H-1 cells by low concentrations of agonist. J. Physiol. (Lond.) 373:129–1629.

    Google Scholar 

  9. Mukhtarov, M. R., Vyskočil, F., Urazaev, A. Kh., and Nikolsky, E. E. 1999. Non-quantal acetylcholine release is increased after nitric oxide synthase inhibition. Physiol. Res. 48:315–317.

    PubMed  Google Scholar 

  10. Linder, T. M., Pennefather, P., and Quastel, D. M. J. 1984. The time-course of miniature endplate currents and its modification by receptor blockade and ethanol. J. Gen. Physiol. 83:435–468.

    PubMed  Google Scholar 

  11. Kovyazina, I. V., Nikolsky, E. E., Giniatullin, R. A., and Vyskočil, F. 1996. Effects of acetylcholinesterase inhibition in neuromuscular synapses in different functional states. Neirofiziologia 28:263–267.

    Google Scholar 

  12. Stiles, J. R., Kovyazina, I. V., Salpeter, E. E., and Salpeter, M. M. 1996. Experimental and modeling analysis of miniature endplate current variability: Effects of temperature and cholinesterase inhibition. Thesis of 26th Annual Meeting of Society for Neuroscience Washington, D. C. 22:788.

  13. Bukharaeva, E., Samigullin, D., Nikolsky, E. E., and Vyskočil, F. 2000. Cyclic AMP synchronizes evoked quantal release at frog neuromuscular junction. Physiol. Res. 49:475–479.

    PubMed  Google Scholar 

  14. Wathey, J. C., Nass, M. N., and Lester, H. A. 1979. Numerical reconstruction of the quantal event at nicotinic synapses. Biophys. J. 27:145–164.

    PubMed  Google Scholar 

  15. Magazanik, L. G., Snetkov, V. A., Nigmatullin, N. R., and Nikolsky, E. E. 1986. Mathematical modeling of factors determining the time-course of miniature postsynaptic currents in frog muscle [in Russian] Doklady Akademii Nauk SSSR 289:733–737.

  16. Bartol, T. M., Land, B. R., Salpeter, E. E., and Salpeter, M. M. 1991. Monte-Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys. J. 59:1290–1307.

    PubMed  Google Scholar 

  17. Madsen, B. W., Edeson, R. O., Lam, H. S., and Milne, R. K. 1984 Numerical simulation of miniature endplate currents. Neurosci. Lett. 48:67–74.

    PubMed  Google Scholar 

  18. Madsen, B. W., Edeson, R. O., and Milne, R. K. 1988. Neurotransmission parameters estimated from miniature endplate current growth phase. Brain Res. 402:387–392.

    Google Scholar 

  19. Land, B. R., Salpeter, E. E., and Salpeter, M. M. 1980. Acetylcholine receptor site density affects the rising phase of miniature endplate currents. Proc. Natl. Acad. Sci. USA 77:3736–3740.

    PubMed  Google Scholar 

  20. Land, B. R., Salpeter, E. E., and Salpeter, M. M. 1980. Kinetic parameters for acetylcholine interaction in intact neuromuscular junction. Proc. Natl. Acad. Sci. USA 78:7200–7204.

    Google Scholar 

  21. Maconochie, D. J. and Steinbach, J. H. 1998. The channel opening rate of adult-and fetal-type mouse muscle nicotinic receptors activated by acetylcholine. J. Physiol. 506:53–57.

    PubMed  Google Scholar 

  22. Tanzi, F. and D'Angelo, E. 1995. Miniature endplate current kinetics at the mouse neuromuscular junction: Effects of temperature and medium viscosity. Eur. J. Neurosci. 7:1926–1933.

    PubMed  Google Scholar 

  23. Nigmatullin, N. R., Magazanik, L. G., Nikolsky, E. E., and Snetkov, V. A. 1988. Analysis of the model of miniature end-plate current [in Russian] Neirofiziologia 20:390–398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovyazina, I.V., Nikolsky, E.E., Giniatullin, R.A. et al. Dependence of Miniature Endplate Current on Kinetic Parameters of Acetylcholine Receptors Activation: A Model Study. Neurochem Res 28, 443–448 (2003). https://doi.org/10.1023/A:1022896601271

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022896601271

Navigation