Skip to main content
Log in

Analysis of the Exciton States of Polyconjugated Systems by the Transition Density Matrix Method

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A semiempirical algorithm for calculating exciton zones in polymers has been developed within the framework of the configuration interaction singles (CIS) method taking into account the interaction of all singly excited configurations. An illustrative method based on a transition density matrix is proposed to analyze electron‐excited states in periodic structures. Indices of intermonomer charge transfer and excitation localization on monomer fragments are introduced. A quantum‐chemical definition is given for the specific characteristics of an exciton transition, i.e., the excitation radius and the average exciton radius for the entire exciton zone. Concrete calculations for a series of polyphenylenevinylenes and polyaromatic systems indicate localization of excitations, in particular, of triplet ones, mainly on the central link and the nearest neighboring links of a polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Simon and J.-J. Andre, Molecular Semiconductors BRD, Springer Verlag (1985).

  2. M. Pope and Ch. Swenberg, Electronic Processes in Organic Crystals, Oxford Univ. Press, Oxford (1982).

    Google Scholar 

  3. V. S. Myl'nikov, Photoconductivity of Polymers [in Russian], Khimiya, Leningrad (1990).

    Google Scholar 

  4. A. V. Vannikov, A. D. Grishina, and S. V. Novikov, Usp. Khim., 63, No. 2, 107-129 (1994).

    Google Scholar 

  5. V. D. Pokhodenko and N. F. Guba, Teor. Éksp. Khim. 30, No. 5, 241-263 (1994).

    Google Scholar 

  6. V. I. Krinichny, Usp. Khim., 65, No. 6, 564-580 (1996).

    Google Scholar 

  7. J. Shinar, J. Partee, E. List, et al., Mol. Cryst. Liq. Cryst. 361, 1-6 (2001).

    Google Scholar 

  8. J.-L. Bredas, C. Corni, D. Belijonne, et al., Acc. Chem. Res., 32, 267-276 (1999).

    Google Scholar 

  9. Yu. G. Kriger, Zh. Strukt. Khim., 40, No 4, 734-767 (1999).

    Google Scholar 

  10. M. Chandross, Y. Shimoi, and S. Mazumdar, Chem. Phys. Lett., 280, 85-90 (1997).

    Google Scholar 

  11. A. V. Luzanov, A. A. Sukhorukov, V. É. Umansky, Teor. Éksp. Khim. 10, No. 4, 456-464 (1974).

    Google Scholar 

  12. A. V. Luzanov and V. F. Pedash, Teor. Éksp. Khim. 15, No. 4, 436-441 (1979).

    Google Scholar 

  13. A. V. Luzanov, Usp. Khim., 49, No. 11, 2086-2117 (1980).

    Google Scholar 

  14. K. Morokuma, J. Chem. Phys., 54, No. 3, 962-971 (1971).

    Google Scholar 

  15. D. L. Beveridge, I. Jano, and J. Ladik, J. Chem. Phys. 56, No. 10, 4744-4751 (1971).

    Google Scholar 

  16. A. Imamura and H. Fujita, ibid., 61, 115-125 (1974).

    Google Scholar 

  17. R. A. Évarestov, Quantum-Chemical Methods in the Theory of Solids [in Russian], Izd. Leningrad. Univ., Leningrad (1982).

    Google Scholar 

  18. S. G. Semenov, Zh. Strukt. Khim., 38, No. 5, 780-786 (1998).

    Google Scholar 

  19. M. M. Mestechkin, Instability of Hartree-Fock Equations and Stability of Molecules [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  20. R. Knoks, Theory of Excitons New York (1963).

  21. P. Swiderec and G. Hohlneicher, J. Mol. Srtuct. 262, 187-207 (1992).

    Google Scholar 

  22. A. V. Luzanov and Yu. F. Pedash, Teor. Éksp. Khim., 21, No. 4, 387-391 (1985).

    Google Scholar 

  23. A. V. Luzanov, Teor. Éksp. Khim., 22, No. 5, 513-523 (1986).

    Google Scholar 

  24. A. V. Luzanov and V. V. Ivanov, Zh. Strukt. Khim., 38, No. 1, 14-22 (1997).

    Google Scholar 

  25. M. M. Mestechkin, The Method of Density Matrix in the Theory of Molecules [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  26. D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra [in Russian], Izd. Fiz. Mat. Lit., Moscow (1963).

    Google Scholar 

  27. K. Tanaka and T. Yamabe, Adv. Quant. Chem., 17, 251-284 (1985).

    Google Scholar 

  28. V. A. Gubanov and V. P. Zhukov, Semiempirical Methods of Molecular Orbitals in Quantum Chemistry [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  29. A. A. Dulov and A. A. Slinkin, Organic Semiconductors [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  30. B. I. Verkin and A. V. Prikhot'ko, Cryocrystals [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  31. N. Tyutyulkov, F. Deitz, K. Mullen, and M. Baumgarten, Chem. Phys. Lett., 111-114 (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luzanov, A.V. Analysis of the Exciton States of Polyconjugated Systems by the Transition Density Matrix Method. Journal of Structural Chemistry 43, 711–720 (2002). https://doi.org/10.1023/A:1022884018770

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022884018770

Keywords

Navigation