Skip to main content
Log in

Agrobacterium tumefaciens-mediated genetic transformation of rye (Secale cereale L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A system for the genetic transformation of rye by co-cultivation with Agrobacterium tumefaciens is described. A total of 45 independent transgenic plants were regenerated with a transformation efficiency of 1 to % of the inoculated explants. The co-cultivation of Agrobacterium-strain AGL0, harboring plasmid pJFnptII and rye im-mature embryos in liquid medium allowed a high throughput and facilitated washing of the cultures to avoid Agrobacterium overgrowth. Transgenic plants were phenotypically normal and fully fertile, which might be aconsequence of the short time in tissue culture. The selection with paromomycin exclusively during the regen-eration allowed the efficient recovery of transgenic events without interfering with somatic embryogenesis. Southern blot analysis confirmed the independent nature of the analyzed plants and indicated single copy inserts in more than 50% of them. Segregation analysis confirmed single locus integration and stable transgene expression in most of the lines, while one line with multiple locus integration was also observed. The analysis of T-DNA:: plant DNA boundary sequences revealed examples of exclusion of vector sequences, deletion of a few bases of the T-DNA or insertion of up to 29 bases of the vector backbone. This stresses the importance of detailed analysis of the inserted transgenes in order to identify events with the desired integration profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt-Mörbe J., Kühmann H. and Schröder J. 1989. Differences in induction of Ti-plasmid virulence genes virG and virD and continued control of vir D expression by four external factors. Mol. Plant-Microbe interact 2: 301–308.

    Google Scholar 

  • Altpeter F. and Xu J. 2000. Rapid production of transgenic turfgrass (Festuca rubra L.) plants. J. Plant Physiol. 157: 441–448.

    Google Scholar 

  • Baulcombe D.C. and English J.J. 1996. Ectopic pairing of homologous DNA and post-transcriptional gene silencing in transgenic plants. Curr. Opin. Biotechnol. 7: 173–180.

    Google Scholar 

  • Bidney D., Scelonge C., Martich J., Burrus M., Sims L. and Huffman G. 1992. Microprojectile bombardment of plant tissues increase transformation frequency by Agrobacterium tumefaciens. Plant Mol. Biol. 18: 301–313.

    Google Scholar 

  • Castillo A.M., Vasil V. and Vasil I.K. 1994. Rapid production of fertile transgenic plants of rye (Secale cereale L.). Bio/Technology 12: 1366–1371.

    Google Scholar 

  • Cheng M., Fry J.E., Pang S., Zhou H., Hironaka C.M., Duncan D.R. et al. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115: 971–980.

    Google Scholar 

  • Czernilofsky A.P., Hain R., Baker B. and Wirtz U. 1986. Studies of the structure and functional organization of foreign DNA integrated into the genome of Nicotiana tabacum. DNA 5: 473–482.

    Google Scholar 

  • De la Pena A., Lorz H. and Schell J. 1987. Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 325: 274–276.

    Google Scholar 

  • Dellaporta S.L., Wood J. and Hicks J.B. 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 4: 19–21.

    Google Scholar 

  • Dillen W., De Clercq J., Kapila J., Zambre M., Van Montagu M. and Angenon G. 1997. The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J. 12: 1459–1463.

    Google Scholar 

  • Dong J., Teng W., Buchholz W.G. and Hall T.C. 1996. Agrobacterium-mediated transformation of Javanic rice. Mol. Breeding 2: 267–276.

    Google Scholar 

  • Fang Y.-D., Akula C. and Altpeter F. 2002. Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA::barley genomic DNA junctions. J. Plant Physiol. 159: 1131–1138.

    Google Scholar 

  • Gelvin S.B. 2000. Agrobacterium and plant genes involved in TDNA transfer and integration. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 223–256.

    Google Scholar 

  • Godwin I., Todd G., Ford-Lloyd B. and Newbury H.J. 1991. The effects of acetosyringone and pH on Agrobacterium mediated transformation vary according to plant species. Plant Cell Rep. 9: 671–675.

    Google Scholar 

  • Gould J., Devery M., Hasegawa O., Ulian E.C., Peterson G. and Smith R.H. 1991. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95: 426–434.

    Google Scholar 

  • Hamilton C.M. 1997. A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200: 107–116.

    Google Scholar 

  • Hamilton C.M., Frary A., Lewis C. and Tanksley S.D. 1996. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA 93: 9975–9979.

    Google Scholar 

  • Hajdukiewicz P., Svab Z. and Maliga P. 1994. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25: 989–994.

    Google Scholar 

  • Herrera-Estrella A., Chen Z.M., Van Montagu M. and Wang K. 1988. VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA-protein complex at the 5′ terminus of T-strand molecules. EMBO J. 7: 4055–4062.

    Google Scholar 

  • Hiei Y., Ohta S., Komari T. and Kumashiro T. 1994. Efficient transformation of rice (Oriza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271–282.

    Google Scholar 

  • Hiei Y., Komari T. and Kubo T. 1997. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol. 35: 205–218.

    Google Scholar 

  • Hoekema A., Hirsch P.R., Hooykaas P.J. and Schilperpoort R.A. 1983. A binary plant vector strategy based on separation of virand T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180.

    Google Scholar 

  • Iglesias V.A., Moscome E.A., Papp I., Neuhuber F., Michalowski S., Phelan T. et al. 1997. Molecular and cytogenic analysis of stably and unstably expressed transgene loci in tobacco. Plant Cell 9: 1251–1264.

    Google Scholar 

  • Ishida Y., Saito H., Ohta S., Hiei Y., Komari T. and Kumashiro T. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology 14: 745–750.

    Google Scholar 

  • Klee H. 2000. A guide to Agrobacterium binary Ti vectors. Trends in plant science 5: 446–451.

    Google Scholar 

  • Kohli A., Leech M., Vain P., Laurie D.A. and Christou P. 1998. Transgene integration in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc. Natl. Acad. Sci. USA 95: 7203–7208.

    Google Scholar 

  • Komari T., Hiei Y., Saito Y., Murai N. and Kumashiro T. 1996. Vector carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10: 165–174.

    Google Scholar 

  • Koncz C., Martini N., Mayerhofer R., Koncz-Kalman Z., Körber H., Redei G.P. et al. 1989. High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. 86: 8467–8471.

    Google Scholar 

  • Lazo G.R., Stein P.A. and Ludwig R.A. 1991. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/Technology 9: 963–967.

    Google Scholar 

  • Matthysse A.G. 1983. Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J. Bacteriol. 154: 906–915.

    Google Scholar 

  • Matthysse A.G. 1987. Characterization of nonattaching mutants of Agrobacterium tumefaciens. J. Bacteriol. 169: 313–323.

    Google Scholar 

  • McKnight T.D., Lillis M.T. and Simpson R.B. 1987. Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol. Biol. 8: 439–445.

    Google Scholar 

  • Mersereau M., Pazour G.J. and Das A. 1990. Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene 90: 149–151.

    Google Scholar 

  • Mooney P.A., Goodwin P.B., Dennis E.S. and Llewellyn D.J. 1991. Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell Tissue Organ Cult. 25: 209–218.

    Google Scholar 

  • Murashige T. and Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum 15: 473–479.

    Google Scholar 

  • Nauerby B., Billing K. and Wyndaele R. 1997. Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Science 123: 169–177.

    Google Scholar 

  • Ochman H., Medhora M.M., Garza D. and Hartl D.L. 1990. Amplification of flanking sequences by inverse PCR. In: Innis M.A., Gelfand D.H., Sninsky J.J. and White T.J. (eds), PCR Protocols: A Guide to Methods and Application. Academic Press, San Diego, pp. 219–227.

    Google Scholar 

  • Pederson C., Zimny J., Becker D., Jahne-Gartner A. and Lorz H. 1997. Localization of introduced genes on the chromosomes of transgenic barley, wheat and triticale by fluorescence in situ hybridization. Theor. Appl. Genet. 94: 749–757.

    Google Scholar 

  • Popelka J.C. and Altpeter F. 2001. Interactions between genotypes and culture media components for improved in-vitro response of rye (Secale cereale L.) inbred lines. Plant Cell Rep. 20: 575–582.

    Google Scholar 

  • Raineri D.M., Bottino P., Gordon M.P. and Nester E.W. 1990. Agrobacterium-mediated transformation of rice (Oriza sativa L.). Bio/Technology 8: 33–38.

    Google Scholar 

  • Reuhs B.L., Kim J.S. and Matthysse A.G. 1997. Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of cell-associated, acidic polysaccharide. J. Bacteriol. 179: 5372–5379.

    Google Scholar 

  • Sheng J. and Citowsky V. 1996. Agrobacterium-Plant cell DNA transport: Have virulence proteins, will travel. The Plant Cell 8: 1699–1710.

    Google Scholar 

  • Stachel S.E., Messens E., Van Montagu M. and Zambryski P. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629.

    Google Scholar 

  • Tingay S., McElroy D., Kalla R., Fieg S., Wang M., Thornton S. et al. 1997. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11: 1369–1376.

    Google Scholar 

  • Turk S.C.H.J., Melchers L.S., Den Dulk-Ras H., Regensburg-Tuï nk A.J.G. and Hooykaas P.J.J. 1991. Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the VirA sensor protein. Plant Mol. Biol. 16: 1051–1059.

    Google Scholar 

  • Usami S., Okamoto S., Takebe I. and Machida Y. 1988. Factor inducing Agrobacterium tumefaciens vir gene expression is present in monocotyledonous plants. Proc. Natl. Acad. Sci. USA 85: 3748–3752.

    Google Scholar 

  • Uzé M., Wünn J., Puonto-Kaerlas J., Potrykus I. and Sautter C. 1997. Plasmolysis of precultured immature embryos improves Agrobacterium mediated gene transfer to rice (Oryza sativa L.). Plant Science 130: 87–95.

    Google Scholar 

  • Vijayachandra K., Palanichelvam K. and Veluthambi K. 1995. Rice scutellum induces Agrobacterium tumefaciens vir genes and T-strand generation. Plant Mol. Biol. 29: 125–133.

    Google Scholar 

  • Yadav N.S., Vanderleyden J., Bennett D.R., Barnes W.M. and Chilton M.D. 1982. Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc. Natl. Acad. Sci. 79: 6322–6326.

    Google Scholar 

  • Zambryski P., Depicker A., Kruger K. and Goodman H. 1982. Tumor induction of Agrobacterium tumefaciens: analysis of the boundaries of T-DNA. J. Mol. Appl. Genet. 1: 361–370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popelka, J.C., Altpeter, F. Agrobacterium tumefaciens-mediated genetic transformation of rye (Secale cereale L.). Molecular Breeding 11, 203–211 (2003). https://doi.org/10.1023/A:1022876318276

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022876318276

Navigation