Skip to main content
Log in

X‐Ray Photoelectron‐ and Auger‐Spectroscopic Study of Superstoichiometric Fluorographite‐Like Materials

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

X‐ray photoelectron spectroscopy (XPS) and Auger spectroscopy methods were used to study industrial fluorographite‐like fluorocarbon materials (FCMs) of superstoichiometric CF1.25–1.33 composition [fluorosibunite (FS) and T‐900 fluorinated soot (FT)] and fluorinated graphites of CF0.88–1.08 composition. Based on XPS analysis, models were proposed for the surface layer structures in nanofragments of the FCMs and fluorographite. The main structural element of the FCMs and fluorographites studied here is a corrugated carbon network with CF and CF2 groups of several types. The CF networks of the FCM structures contain holes formed upon fluorination of the initial carbon materials and filled with alternating CF and CF2 groups. The bond energies of the inner C1s and F1s levels and the kinetic energies of F KLL Auger spectra suggest a covalent nature of all types of bonds between the carbon and fluorine atoms. Calculations using XPS data revealed common and specific features in correlations between the volume stoichiometry of the FCMs and fluorographites and the atomic F/C ratios in the surface layers of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Watanabe, T. Nakajima, and H. Touhara, Studies in Inorganic Chemistry, Vol. 8: Graphite Fluorides, Elsevier, Amsterdam-Oxford-New York-Tokyo (1988).

    Google Scholar 

  2. V. N. Mitkin, Novel Electrode Materials for Lithium Chemical Engineering [in Russian], Izd. Novosib. Zavoda Khim. Konts., Novosibirsk (2001).

    Google Scholar 

  3. W. Rudorff and G. Rudordff, Chem. Ber., 8, 413-417 (1947); cited by Advances in Inorganic Chemistry and Radiochemistry, Vol. 1, Academic Press, New York (1959), pp. 232-233; see also: V. K. Mahajan., R. B. Badachape, and J. L. Margrave, Inorg. Nucl. Chem. Lett., 10, 1103-1109 (1974).

    Google Scholar 

  4. R. J. Lagow, R. B. Badachape, P. Ficaloro, et al., J. Chem. Soc., Dalton Trans., No. 12, 1268-1273 (1974).

  5. N. Watanabe, Y. Koyama, et al., J. Electrochem. Soc. Jpn., No. 1, 17-25 (1964).

    Google Scholar 

  6. A. Tressaud, F. Moguet, S. Flandrois, et al., J. Phys. Chem. Solids, 57, Nos. 6-8, 745-751 (1996).

    Google Scholar 

  7. L. G. Bulusheva, A. V. Okotrub, V. N. Mitkin, et al., Zh. Strukt. Khim., 37, 1072-1080 (1996).

    Google Scholar 

  8. G. Nanse, E. Papirer, P. Fioux, et al., Carbon, 35, 175-194 (1997).

    Google Scholar 

  9. P. Cadman, J. D. Scott, and J. M. Thomas, Carbon, 15, 75-86 (1977).

    Google Scholar 

  10. J. E. Houston, J. W. Rogers, R. R. Rye, et al., Phys. Rev. B, 34, 1215-1226 (1986).

    Google Scholar 

  11. I. P. Asanov, V. M. Paasonen, L. N. Mazalov, and A. S. Nazarov, Zh. Strukt. Khim., 39, 1127-1133 (1998).

    Google Scholar 

  12. A. Dilks, “X-ray photoelectron spectroscopy for the investigation of polymeric materials,” in: Electron Spectroscopy: Theory, Techniques, and Applications, Vol. 4, Academic Press, London (1981).

    Google Scholar 

  13. G. Nanse, E. Papirer, P. Fioux, et al., Carbon, 35, 371-388 (1997).

    Google Scholar 

  14. T. Nakajima and N. Watanabe, Graphite Fluorides and Carbon Fluorine Compounds, CRC Press, Boca Raton (1991).

    Google Scholar 

  15. L. G. Bulusheva, S. L. Kasyanov, et al., Phys. Low-Dimens. Struct., 11/12, 189-202 (1998).

    Google Scholar 

  16. Yu. M. Nikolenko, A. K. Tsvetnikov, T. Yu. Nazarenko, and A. M. Ziatdinov, Zh. Neorg. Khim., 41, 747-753 (1996).

    Google Scholar 

  17. V. N. Mitkin, L. L. Gornostayev, S. V. Zemskov, et al., “Carbon uoride and method for its production,” Patent of the Russian Federation, No. 2054375 (06. 23. 92), Byul. Izobr., No. 5 (1996).

  18. V. N. Mitkin et al., "Powder FT and FC polycarbonuoride powders," Technical Specifications, No. 349735-0003-0353944-97, Novosibirsk-Angarsk (1997).

  19. L. G. Bulusheva, A. V. Okotrub, V. N. Mitkin, et al., Zh. Strukt. Khim., 36, 630-635 (1995).

    Google Scholar 

  20. I. P. Asanov, V. N. Mitkin, and L. N. Mazalov, “Microchemical analysis of uorocarbons and uorocarbon materials,” in: Abstracts of 11th European Symposium on Fluorine Chemistry, Bled, Slovenia (1995).

  21. Hrsg. von G. Brauer, Handbuch der Präparativen Anorganischen Chemie, Stuttgart (1954).

  22. V. N. Mitkin, L. M. Levchenko, T. N. Denisova, et al., in: “Microchemical analysis of uorocarbons and uorocarbon materials,” in: Abstracts of the Third Topical Seminar Asian Priorities in Materials Development (June 7-9, Novosibirsk), Novosibirsk (1999).

  23. V. N. Mitkin et al., “Diagnostics of superstoichiometric uorocarbon and cathodic materials nature and its role in design of novel primary highenergetic 3V lithium cells,” in: Proc. of the First Hawaii Buttery Conference, ARD Enterprices, Hawaii (1998).

    Google Scholar 

  24. V. I. Nefedov and V. T. Cherepin, Physical Methods of Solid Surface Investigation [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  25. J. H. Scofield, J. Electron Spectroscop. Relat. Phenom., 8, 129-137 (1976).

    Google Scholar 

  26. R. W. M. Kwok, XPSPEAK, Version 4.0.

  27. V. N. Mitkin and I. M. Oglezneva, “Fourie IR-spectroscopic study of industrial uorocarbon materials,” in: Asian Priorities in Materials Development, Abstract of the Third Topical Seminar (June 7-9, 1999), Novosibirsk (1999). See also: V. N. Mitkin and I. M. Oglezneva, Zh. Prikl. Khim., 73, 1595-1603 (2000).

  28. J. H. Simons (ed.), Fluorine Chemistry, Academic Press, New York (1954).

    Google Scholar 

  29. V. N. Mitkin, P. P. Semjannikov, and V. M. Grankin, “Thermoanalytical and high-temperature mass-spectrometric study of industrial uorocarbon materials,” in: Asian Priorities in Materials Development, Abstracts of the Third Topical Seminar (June 7-9, 1999), Novosibirsk (1999).

  30. V. Mitkin, S. Filatov, P. Galkin, et al., “A study of electrochemical amd microchemical processes in the uorocarbon-lithium model coin cell BR2325 under storage and their Inuence for the long life of 'CF-Li sources'-98TH8299," in: Proc. of The Thirteen Annual Battery Conference on Applications and Advances, California State University, Long Beach, California (1998).

    Google Scholar 

  31. V. N. Mitkin, P. S. Galkin, T. N. Denisova, et al., “The corrosion phenomena in the coin cell BR2325 'superstoichiometric uorocarbon-lithium' system,” in: Materials for Electrochemical Energy Storage and Conversion, II, Batteries, Capacitors and Fuel Cells, MRS Symp. Proc., Vol. 496, Boston (1998), pp. 57-62.

  32. D. E. Ramaker, J. Vac. Sci. Technol. A, 7, 1614-1622 (1989).

    Google Scholar 

  33. D. E. Ramaker, Appl. Surf. Sci., 243-267 (1985).

  34. B. I. Dunlap, F. L. Hutson, and D. E. Ramaker, J. Vac. Sci. Technol., 18, 556-560 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitkin, V.N., Asanov, I.P. & Mazalov, L.N. X‐Ray Photoelectron‐ and Auger‐Spectroscopic Study of Superstoichiometric Fluorographite‐Like Materials. Journal of Structural Chemistry 43, 843–855 (2002). https://doi.org/10.1023/A:1022837626947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022837626947

Keywords

Navigation