Skip to main content
Log in

Numerical simulation of an elastoplastic plate via mixed finite elements

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A mixed interpolated formulation for the analysis of elastoplastic Reissner-Mindlin plates is presented. Special attention is given to the limit case of very small thickness that is well known to lead to inaccurate numerical solutions, unless ad-hoc remedies are taken into account to avoid locking (such as reduced or selective integration schemes). The finite element presented herein combines the higher-order approach with the mixed-interpolated formulation of linear elastic problems. This mixed element has been herein extended to the elasto-plastic behavior, using a J 2 approach with yield function depending on moments and shear stresses. A backward-Euler procedure is then used to map the elastic trial stresses back to the yield surface with the aid of a Newton-Raphson approach to solve the nonlinear system and without the calculation of the consistent tangent matrix. The element is shown to be very effective for the class of benchmark problems analyzed and does not present any locking or instability tendencies, as illustrated by various representative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J.R. Hughes and J.R. Stewart, A space-time formulation for multiscale phenomena. J. Comp. Appl. Math. 74 (1996) 217–229.

    Google Scholar 

  2. A. Carpinteri and B. Chiaia, Multifractal scaling laws in the breaking behaviour of disordered materials. Chaos, Solitons and Fractals 8 (1997) 135–150.

    Google Scholar 

  3. I. Carol and K. Willam, Spurious energy dissipation/generation in stiffness recovery models for elastic degradation and damage. Int. J. Solids Structs. 33 (1996) 2939–2957.

    Google Scholar 

  4. B. Loret and E. Rizzi, Strain localization in fluid-saturated anisotropic elastic-plastic porous media. Int. J. Eng. Sci. 37 (1999) 235–251.

    Google Scholar 

  5. Z.P. Bazant, Size Effect Aspects of Measurement of Fracture Characteristics of Quasibrittle Material. Adv. Cement Based Materials 4(3–4) (1996) 128–137.

    Google Scholar 

  6. M.G.D. Geers, R. de Borst and R.H.J. Peerlingsa, Damage and crack modeling in single-edge and doubleedge notched concrete beams. Eng. Fract. Mech. 65 (2000) 247–261.

    Google Scholar 

  7. M.E. Gurtin, Configurational Forces as Basic Concepts of Continuum Physics. New York: Springer-Verlag (2000) 249 pp.

    Google Scholar 

  8. P.M. Mariano and F.L. Stazi, Strain localization in elastic micro-cracked bodies, Comp. Meth. Appl. Mech. Eng. 190 (2001) 5657–5677.

    Google Scholar 

  9. J. Lubliner, Plasticity Theory. New York: Macmillan (1990) 495 pp.

    Google Scholar 

  10. J.C. Simo and T.J.R. Hughes, Computational Inelasticity. New York: Springer-Verlag (1997) 392 pp.

    Google Scholar 

  11. T. Belytschko, W.K. Liu and B. Moran, Nonlinear Finite Elements for Continua and Structures. Chichester: Wiley (2000) 650 pp.

    Google Scholar 

  12. M.A. Crisfield, Non-Linear Finite Element Analysis of Solids and Structures, vol. 1–2. Swansea: Wiley (1991) 271 pp.

    Google Scholar 

  13. D.R.J. Hinton and E. Hinton, Finite Elements in Plasticity. Swansea: Pineridge Press (1980) 594 pp.

    Google Scholar 

  14. T.J.R. Hughes, R.L. Taylor and W. Kanoknukulchai, A simple and efficient finite element for plate bending. Int. J. Num. Meth. Engng. 11 (1977) 1529–1543.

    Google Scholar 

  15. J.K. Batoz, K.-J. Bathe and L. Ho, A study of three-node triangle plate bending, elements. Int. J. Num. Meth. Engng. 15 (1980) 1771–1812.

    Google Scholar 

  16. R.K.N.D. Rajapakse and A.P.S. Selvadurai, On the performance of Mindlin plate elements in modelling plate-elastic medium interaction: a comparative study. Int. J. Num. Meth. Engng. 23 (1986) 1229–1244.

    Google Scholar 

  17. J.N. Reddy, Mechanics of Laminated Composite Plates: Theory and Analysis. Bocar Raton: CRC Press (1997) 782 pp.

    Google Scholar 

  18. E. Reissner, The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 23 (1945) 69–77.

    Google Scholar 

  19. R.D. Mindlin, Influence of rotary inertia and shear on flexural motion of isotropic, elastic plates. J. Appl. Mech. 18 (1951) 31–38.

    Google Scholar 

  20. J.C. Simo and J.M. Kennedy, Finite strain elastoplasticity in stress resultant-geometrically exact shell. Proc. COMPLAS II, Barcelona (1989) 651–670.

  21. K-J. and E. Dvorkin, A four-node plate bending element based on Mindlin-Reissner plate theory and mixed interpolation. Int. J. Num. Meth. Engng. 21 (1985) 367–383.

    Google Scholar 

  22. P. Papadopoulos and R.L. Taylor, An analysis of inelastic Reissner-Mindlin plates. Finite Elements Analysis Design 10 (1991) 221–223.

    Google Scholar 

  23. F. Auricchio and R.L. Taylor, A generalized elastoplastic plate theory and its algorithmic implementation. Int. J. Num. Meth. Engng. 37 (1994) 2583–2608.

    Google Scholar 

  24. A. Ibrahimbegovic and F. Frey, An efficient implementation of stress resultant plasticity in analysis of Ressner-Mindlin plates. Int. J. Num. Meth. Engng. 36 (1993) 303–320.

    Google Scholar 

  25. C.P. Providakis and D.E. Beskos, Inelastic transient dynamic analysis of Reissner-mindlin plates by the D/BEM. Int. J. Num. Meth. Engng. 49 (2000) 383–397.

    Google Scholar 

  26. K-J. Bathe, Finite Element Procedures. Englewood Cliffs, New Jersey: Prentice Hall (1996) 1037 pp.

    Google Scholar 

  27. F. Brezzi, K-J. Bathe and M. Fortin, Mixed-interpolated elements for Reissner-Mindlin plates. Int. J. Num. Meth. Engng. 28 (1990) 1787–1801.

    Google Scholar 

  28. T.J.R. Hughes, The Finite Element Method. Englewood Cliffs, New Jersey: Pretience-Hall (1987) 682 pp.

    Google Scholar 

  29. O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method. New York: McGraw-Hill (1989) 459 pp.

    Google Scholar 

  30. I. Babuška: The p and hp versions of the finite element method. The state of the art. In: D.L. Dwoyer, M.Y. Hussaini, R.. Voigt (eds), Finite elements, Theory and Application. New York: Springer-Verlag (1988) 199–239.

    Google Scholar 

  31. L. DellaCroce and T. Scapolla, Hierarchic finite elements for moderately thick to very thin plates. Comp. Mech. 10 (1992) 263–279.

    Google Scholar 

  32. L. DellaCroce and T. Scapolla, Hierarchic finite elements with selective and uniform reduced integration for Reissner-Mindlin plates. Comp. Mech. 10 (1992) 121–131.

    Google Scholar 

  33. L. DellaCroce and T. Scapolla, Transverse shear strain approximation for the Reissner-Mindlin plate with high order hierarchic finite elements. Mech. Res. Comm. 20 (1993) 1–7.

    Google Scholar 

  34. L. DellaCroce and T. Scapolla, Serendipity and bubble plus hierarchic finite elements for thin and thick plates. Struct. Eng. Mech. 9 (2000) 433–448.

    Google Scholar 

  35. L. DellaCroce and T. Scapolla, Hierarchic and mixed-interpolated finite elements for Reissner-Mindlin problems. Comm. Num. Meth. Engng. 11 (1995) 549–562.

    Google Scholar 

  36. P.L. George and P. Laug, Normes d'utilisazion et de programmation MODULEF-INRIA (1982).

  37. Modulef Installation page. http://www-rocq.inria.fr/modulef

  38. W. Han and B.D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis. New York: Springer (1999) 371 pp.

    Google Scholar 

  39. B.D. Reddy, Mixed variational inequalities arising in elastoplasticity. Nonlin. Anal. 19 (1992) 1071–1089.

    Google Scholar 

  40. B.D. Reddy, Introductory Functional Analysis. New York: Springer (1998) 471 pp.

    Google Scholar 

  41. G.S. Shapiro, On yield surfaces for ideally plastic shells. Prob. Contin. Mech. 10 (1961) 414–418.

    Google Scholar 

  42. G.V. Ivanov, Approximating the final relationship between the forces and moments of shells under the Mises plasticity condition. Mekhanika Tverdogo Tela. 2 (1967) 74–75.

    Google Scholar 

  43. S. Timoshenko and S. Woinowski-Krieger, Theory of Plates and Shells. New York: McGraw Hill (1970) 345 pp.

    Google Scholar 

  44. T. Scapolla and L. DellaCroce, Numerical solution of singularly loaded Reissner-Mindlin Plates with hierarchic serendipity and bubble plus finite elements, In: M. Feistauer, R. Rannacher and K. Kozel (eds.), Proceedings of the 2nd Summer Conference on Numerical Modelling in Continuum Mechanics. (1994) pp. 235–245.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Della Croce, L., Venini, P. & Nascimbene, R. Numerical simulation of an elastoplastic plate via mixed finite elements. Journal of Engineering Mathematics 46, 69–86 (2003). https://doi.org/10.1023/A:1022836202029

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022836202029

Navigation