Skip to main content
Log in

Age- and Sex-Dependent Effects of Ethanol on Hippocampal Hemicholinium-3 Sensitive Choline Carriers During Postnatal Development of Rats

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Vulnerability of hippocampal hemicholinium-3 (HC-3)-sensitive carriers to ethanol was evaluated in vitro during rat postnatal development. The high-affinity uptake of [3H]choline (HACU) and the specific binding of [3H]HC-3 were measured on synaptosomes from 7-, 14-, and 60-day- and 3-month-old male and female Wistar rats. Marked increases of basal (between 7 and 60 days of age) and of stimulated HACU levels via K+-depolarization (between 14 days and 3 months) but only a mild elevation in [3H]HC-3 binding (between 7 days and 3 months) associated with alterations in the binding site number were found. On the mature tissue, ethanol at high concentrations (5%) moderately inhibited the choline transport under basal conditions but totally eliminated depolarization effects. However, both age- and sex-dependent alterations in basal HACU mediated by high or low pharmacologically relevant alcohol concentrations (50–100 mM) were observed in the immature tissue. Namely, the dose- and incubation time–dependent inhibition of HACU associated with changes in the transport velocity was found in postnatal male but not female tissue. [3H]HC-3 binding site was not markedly sensitive to ethanol actions. Anisotropy measurements in the region of the hydrophilic heads of phospholipid bilayers and in the membrane hydrocarbon core indicated penetration of 100 mM ethanol to immature female but not male tissue. Our results suggest the noncompetitive binding of alcohol to choline carriers from immature male tissue and correspond with data reporting significant sexual dimorphism of postnatal hippocampal neurons. The direct effects of ethanol on male choline carriers can contribute to the inhibition of acetylcholine synthesis and to sex-dependent neurotoxic effects of alcohol applied in vivo during early and late postnatal period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tuček, S. 1985. Regulation of acetylcholine synthesis in the brain. J. Neurochem. 44:11–24.

    PubMed  Google Scholar 

  2. Simon, J. R., Atweh, S., and Kuhar, M. J. 1976. Sodium-dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine. J. Neurochem. 26:909–922.

    PubMed  Google Scholar 

  3. Sorimachi, M. and Kataoka, K. 1975. High affinity choline uptake: An early index of cholinergic innervation in rat brain. Brain Res. 94:325–336.

    PubMed  Google Scholar 

  4. Coyle, J. T. and Yamamura, H. I. 1976. Neurochemical aspects of the ontogenesis of cholinergic neurons in the rat brain. Brain Res. 118:429–440.

    PubMed  Google Scholar 

  5. Shelton, D. L., Nadler, J. V., and Cotman, C. W. 1979. Development of high-affinity choline uptake and associated acetylcholine synthesis in the rat fascia dentata. Brain Res. 163: 263–275.

    PubMed  Google Scholar 

  6. Kotas, A. M. and Prince, A. K. 1987. High-affinity uptake of choline, a marker for cholinergic nerve terminals, is not specific in developing rat brain. Dev. Brain Res. 35:175–181.

    Google Scholar 

  7. Lowenstein, P. R., Slesinger, P. A., Singer, H. S., Walker, L. C., Casanova, M. F., Price, D. L., and Coyle, J. T. 1987. An autoradiographic study of the development of (3H)hemicholinium-3 binding sites in human and baboon basal ganglia: a marker for the sodium-dependent high affinity choline uptake system. Dev. Brain Res. 34:291–297.

    Google Scholar 

  8. Happe, H. K. and Murrin, L. C. 1992. Development of high-affinity choline transport sites in rat forebrain: A quantitative autoradiography study with (3H)hemicholinium-3. J. Comp. Neurol. 321:4591–4611.

    Google Scholar 

  9. Zahalka, E. A., Seidler, F. J., Lappi, S. E., Yanai, J., and Slotkin, T. A. 1993. Differential development of cholinergic nerve terminal markers in rat brain regions: Implications for nerve terminal density, impulse activity and specific gene expression. Brain Res. 601:221–229.

    PubMed  Google Scholar 

  10. Ferguson, S. S. G., Rylett, R. J., and Collier, B. 1994. Regulation of rat brain synaptosomal (3H)hemicholinium-3 binding and (3H)choline transport sites following exposure to choline mustard aziridinium ion. J. Neurochem. 63:1328–1337.

    PubMed  Google Scholar 

  11. Swann, J. W., Smith, K. L., and Brady, T. J. 1991. Age-dependent alterations in the operations of hippocampal neural networks. Ann. N. Y. Acad. Sci. 627:264–276.

    PubMed  Google Scholar 

  12. Durand, G. M., Kovalchuk, Y., and Konnerth, A. 1996. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381:71–75.

    PubMed  Google Scholar 

  13. Arendt, T., Allen, Y., Marchbanks, R. M., Schugens, M. M., Sinden, J., Lantos, P. L., and Gray, J. A. 1989. Cholinergic system and memory in the rat: Effects of chronic ethanol, embryonic basal forebrain brain transplants and excitotoxic lesions of cholinergic basal forebrain projection system. Neuroscience 33:435–462.

    PubMed  Google Scholar 

  14. Okonmah, A. D., Brown, J. W., Fishman, L. M., Carballeira, A., and Soliman, K. F. A. 1989. Influence of ethanol on fetal brain cholinergic enzyme activities. Pharmacology 39:367–372.

    PubMed  Google Scholar 

  15. Nio, E., Kogure, K., Yae, T., and Onodera, H. 1991. The effects of maternal ethanol exposure on neurotransmission and second messenger systems: A quantitative autoradiographic study in the rat brain. Dev. Brain Res. 62:51–60.

    Google Scholar 

  16. Tan, X. X., Castoldi, A. F., Manzo, L., and Costa, L. G. 1993. Interaction of ethanol with muscarinic receptor-stimulated phosphoinositide metabolism during the brain growth spurt in the rat: role of acetaldehyde. Neurosci. Lett. 156:213–216.

    Google Scholar 

  17. Balduini, W., Reno, F., Costa, L. G., and Cattabeni, F. 1994. Developmental neurotoxicity of ethanol: Further evidence for an involvement of muscarinic receptor-stimulated phosphoinositide hydrolysis. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 266:283–289.

    Google Scholar 

  18. Daniell, L. C. and Harris, R. A. 1988. Effect of chronic ethanol treatment and selective breeding for hypnotic sensitivity on intracellular ionized calcium concentrations in synaptosomes. Alcohol. Clin. Exp. Res. 12:179–183.

    PubMed  Google Scholar 

  19. Twombly, D. A., Herman, M. D., Kye, C. H., and Narahashi, T. 1990. Ethanol effects on two types of voltage-activated calcium channels. J. Pharmacol. Exp. Ther. 254:1029–1037.

    PubMed  Google Scholar 

  20. Madamba, S. G., Hsu, M., Schweitzer, P., and Siggins, G. R. 1995. Ethanol enhances muscarinic cholinergic neurotransmission in rat hippocampus in vitro. Brain Res. 685:221–232.

    Google Scholar 

  21. Chandler, L. J., Kurian, P., and Crews, F. T. 1991. Effects of ethanol on inositol 1,3,4,5-tetrakisphosphate metabolism by rat brain homogenates. Alcohol. Clin. Exp. Res. 15:136–140.

    PubMed  Google Scholar 

  22. Nestler, E. J. 1999. Cellular and molecular mechanisms of addiction. Pages 578–590, in Charney, D. S., Nestler, E. J., and Bunney, B.S. (eds.), Neurobiology of Mental Illness, Oxford University Press, New York.

    Google Scholar 

  23. Mirshahi, T., Anders, D. L., Ronald, K. M., and Woodward, J. J. 1998. Intracellular calcium enhances the ethanol sensitivity of NMDA receptors through an interaction with the CO domain of the NR1 subunit. J. Neurochem. 71:1095–1107.

    PubMed  Google Scholar 

  24. Mrak, R. E. and North, P. E. 1988. Ethanol inhibition of synapto-somal high-affinity choline uptake. Eur. J. Pharmacol. 151:51–58.

    PubMed  Google Scholar 

  25. North, P. E. and Mrak, R. E. 1989. Synaptosomal uptake of choline and of gamma-aminobutyric acid: effects of ethanol and of dimethylsulfoxide. Neurotoxicology 10:569–576.

    PubMed  Google Scholar 

  26. Saltarelli, M. D., Yamada, K., and Coyle, J. T. 1990. Phospholipase A2 and (3H)hemicholinium-3 binding sites in rat brain: A potential second-messenger role for fatty acids in the regulation of high-affinity choline uptake. J. Neurosci. 10:62–72.

    PubMed  Google Scholar 

  27. Sun, G. Y. and Sun, A. Y. 1985. Ethanol and membrane lipids. Alcohol. Clin. Exp. Res. 9:164–180.

    PubMed  Google Scholar 

  28. Mitchell, J. J., Paiva, M., Moore, D. B., Walker, D. W., and Heaton, M. B. 1998. A comparative study of ethanol, hypoglycemia, hypoxia and neurotrophic factor interactions with fetal rat hippocampal neurons: A multi-factor in vitro model developmental ethanol effects. Brain Res. Dev. Brain Res. 105: 2241–2250.

    Google Scholar 

  29. Weaver, M. S., Lee, Y. H., Morris, J. L., Randall, P. K., Schallert, T., and Leslie, S. W. 1993. Effects of in vitro ethanol and fetal ethanol exposure on glutathione stimulation of N-methyl-D-aspartate receptor function. Alcohol. Clin. Exp. Res. 17:643–650.

    PubMed  Google Scholar 

  30. Zou, J. Y., Cohan, C., Rabin, R. A., and Pentney, R. J. 1995. Continuous exposure of cultured rat cerebellar macroneurons to ethanol-depressed NMDA and KCl-stimulated elevations of intracellular calcium. Alcohol. Clin. Exp. Res. 19:840–845.

    PubMed  Google Scholar 

  31. Kovacs, K. A., Kavanagh, T. J., and Costa, L. G. 1995. Ethanol inhibits muscarinic receptor-stimulated phosphoinositide metabolism and calcium mobilization in rat primary cortical cultures. Neurochem. Res. 20:939–949.

    PubMed  Google Scholar 

  32. Smollich, A. and Matzke, M. C. 1986. Variations in the activity and sexual dimorphism of hippocampal pyramidal neurons during the postnatal development of the rat. J. Hirnforsch. 27: 5–17.

    PubMed  Google Scholar 

  33. Bishop, K. M. and Wahlsten, D. 1999. Sex and species differences in mouse and rat forebrain commisures depend on the method of adjusting for brain size. Brain Res. 815:358–366.

    PubMed  Google Scholar 

  34. Kristofiková, Z., Klaschka, J., and Tejkalová, H. 1998. Effects of K+-depolarization, arachidonic acid, ethanol and aging on the high-affinity choline transport in rat hippocampus. Neurochem. Res. 23:923–929.

    PubMed  Google Scholar 

  35. Eckert, G. P., Cairns, N. J., Maras, A., Gattaz, W. F., and Muller, W. E. 2000. Cholesterol modulated the membrane-disordering effects of beta-amyloid peptides in the hippocampus: Specific changes in Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 11:181–186.

    PubMed  Google Scholar 

  36. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    PubMed  Google Scholar 

  37. Dixon, W. J., Sampson, P., and Mundle, P. 1990. One-and two-way analysis of variance with data screening. Pages 189–212, in Dixon, W. J., Brown, M. B., Engelman, L., and Jennrich, T. I. (eds.), BMDP Statistical Software Manual, University of California Press, Berkeley.

    Google Scholar 

  38. Chatterjee, T. K. and Bhatnagar, R. K. 1990. Ca2+-dependent, ATP-induced conversion of the (3H)hemicholinium-3 binding sites form high-to low-affinity states in rat striatum: Effect of protein kinase inhibitors on this affinity conversion and synaptosomal choline transport. J. Neurochem. 54:1500–1508.

    PubMed  Google Scholar 

  39. Kristofiková, Z., Tejkalová, H., and Klaschka, J. 2001. Amyloid beta peptide 1–40 and the function of rat hippocampal hemi-cholinium-3 sensitive choline carriers: Effects of a proteolytic degradation in vitro. Neurochem. Res. 26:203–212.

    PubMed  Google Scholar 

  40. Apparsundaram, S., Ferguson, S. M., George, A. L., and Blakely, R. D. 2000. Molecular cloning of a human, hemicholinium-3-sensitive choline transporter. Biochem. Biophys. Res. Commun. 276:862–867.

    PubMed  Google Scholar 

  41. Okuda, T. and Haga, T. 2000. Functional characterization of the human high-affinity choline transporter. FEBS Lett. 484: 92–97.

    PubMed  Google Scholar 

  42. Pfluger, T., Weil, S., Vollmar C., Heiss, D., Egger, J., Scheck, R., and Hahn, K. 1999. Normative volumetric data of the developing hippocampus in children based on magnetic resonance imaging. Epilepsia 40:414–423.

    PubMed  Google Scholar 

  43. Krištofiková, Z. and Št'astnaý, F. 2001. Age-and sex-dependent alterations in the postnatal development of rat hemicholinium-3 sensitive choline carriers from left and right hippocampus. J. Neurochem. 76:51.

    Google Scholar 

  44. Lin, T. N., Sun, A. Y., and Sun, G. Y. 1988. Effects of Ethanol on arachidonic acid incorporation into lipids of a plasma membrane fraction isolated from brain cerebral cortex. Alcohol. Clin. Exp. Res. 12:795–800.

    PubMed  Google Scholar 

  45. Duffy, O., Menez, J. F., Floch, H. H., and Leonard, B. E. 1991. Changes in whole brain membranes of rats following pre-and post-natal exposure to ethanol. Alcohol. Alcohol. 26: 605–613.

    PubMed  Google Scholar 

  46. McGivern, R. F., Handa, R. J., and Redei, E. 1993. Decreased postnatal testosterone surge in male rats exposed to ethanol during the last week of gestation. Alcohol. Clin. Exp. Res. 17: 1215–1222.

    PubMed  Google Scholar 

  47. Auger, A. P., Hexter, D. P., and McCarthy, M. M. 2001. Sex differences in the phosphorylation of cAMP response element binding protein (CREB) in neonatal rat brain. Brain Res. 890: 110–117.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdena Krištofiková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krištofiková, Z., Platilová, V. & Klaschka, J. Age- and Sex-Dependent Effects of Ethanol on Hippocampal Hemicholinium-3 Sensitive Choline Carriers During Postnatal Development of Rats. Neurochem Res 28, 397–405 (2003). https://doi.org/10.1023/A:1022832214475

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022832214475

Navigation