Skip to main content
Log in

The Relationship between Salinity and Cadmium Stress in Barley

  • Published:
Biologia Plantarum

Abstract

Distribution of cadmium between roots and shoots of barley was manipulated by the cadmium concentration (0.01 and 0.005 mM Cd2+), pH (4.6 and 5.9) as well as treatment duration. The prolongation of treatment increased dry mass and content of cadmium in plants. The cadmium is accumulated mainly in roots. Presence of both, 0.005 mM Cd2+ and 100 mM NaCl in medium at pH 5.9 (Cd-NaCl plants) resulted in the most severe growth inhibition of plants, but about one half accumulation of cadmium in roots then in a case of only Cd-treated plants. In the Cd-NaCl plants, the net photosynthetic and transpiration rates were less reduced then in a case of only NaCl-treated plants. The treatments also influenced uptake of Ca, Cd, Cu, K, Mg, Na and Zn predominantly in roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, A.J.M., Walker, P.L.: Physiological responses of plants to heavy metals and quantification of tolerance toxicity.-Chem. Spec. Bioavailability 1: 7–17, 1989.

    CAS  Google Scholar 

  • Barceló, J., Poschendrieder, C.: Plant water relations as affected by heavy metal stress: a review.-J. Plant Nutr. 13: 1–37, 1990.

    Google Scholar 

  • Brune, A., Dietz, K.-J.: A comparative analysis of elemental composition of roots and leaves of barley seedlings grown in the presence of toxic Cd, molybdenum, nickel, and zinc concentrations.-J. Plant Nutr. 18: 853–868, 1995.

    CAS  Google Scholar 

  • Carborino, J., DuPont, F.M.: Rapid induction of Na+/H+ exchange activity in barley root tonoplast.-Plant Physiol. 89: 1–4, 1989.

    Google Scholar 

  • Cieslinski, G., Vanrees, K.C.J., Huang P.M., Kozak, L.M., Rostad, H.P.W., Knott, D.R.: Cd uptake and bioaccumulation in selected cultivars of durum wheat and flax as affected by soil type.-Plant Soil 180: 115–124, 1996a.

    Article  Google Scholar 

  • Costa, G., Morel, J.L.: Cd uptake by Lupinus albus (L.): Cd excretion, a possible mechanism of Cd tolerance.-J. Plant Nutr. 16: 1921–1929, 1993.

    CAS  Google Scholar 

  • Di Cagno, R., Guidi, L., Stefani, A., Soldatini, G.F.: Effects of Cd on growth of Helianthus annuus seedlings: physiological aspects.-New Phytol. 144: 65–71, 1999.

    Article  CAS  Google Scholar 

  • Dietz, K.-J., Baier, M., Kramer, U.: Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants.-In: Prasad, M.N.V., Hagemayer, J. (ed.): Heavy Metal Stress in Plants: from Molecules to Ecosystems. Pp. 73–79. Springer-Verlag, Berlin 1999.

    Google Scholar 

  • Hagemayer, J., Weisel, Y.: Influence of NaCl, Cd(NO3)2 and air humidity on transpiration of Tamarix aphylla.-Physiol. Plant. 75: 280–284, 1989.

    Article  Google Scholar 

  • Hart, J.J., Welch, R.M., Norvell, W.A., Sullivan, L.A., Kochian, L.V.: Characterization of Cd binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars.-Plant Physiol. 116: 1413–1420, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kinraide, T.B.: Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects.-J. exp. Bot. 50: 1495–1505, 1999.

    Article  CAS  Google Scholar 

  • Klapheck, S., Fliener, W., Zimmer, I.: Hydroxymethyl-phytochelatins [(γ-glutamylcysteine)n-serine]. Are metal-induced peptides of the Poaceae.-Plant Physiol. 104: 1325–1332, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, E.H., Bornman, J.F., Asp, H.: Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus.-J. exp. Bot. 49: 1031–1039, 1998.

    Article  CAS  Google Scholar 

  • Leita, L., Contin, M., Maggioni, A.: Distribution of Cd and induced Cd-binding proteins in roots, stems and leaves of Phaseolus vulgaris.-Plant Sci. 77: 139–147, 1991.

    Article  CAS  Google Scholar 

  • Meuwly, P., Rauser, W.E.: Alternation of thiol pools in roots and shoots of maize seedlings exposed to Cd.-Plant Physiol. 99: 8–15, 1992.

    PubMed  CAS  Google Scholar 

  • Ouyang, H., Vogel, H.J.: Metal ion binding to calmodulin: NMR and fluorescence studies.-Biometals 11: 213–222, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Patra, J., Subharda, A.V., Panda, B.B.: Cycloheximide and buthionine sulfoximine prevent induction of genotoxic adaptation by Cd salt against methyl mercuric-chloride in embryonic shoot cells of Hordeum vulgare L.-Mutat. Res. Lett. 348: 13–18, 1995.

    Article  CAS  Google Scholar 

  • Pendias, A.K., Pendias, H. (ed.): Trace Elements in Soils and Plants.-CRC Press, Boca Raton 1992.

    Google Scholar 

  • Pineros, M.A., Shaff, J.E., Kochian, L.V.: Development, characterization, and application of a Cd-selective microelectrode for the measurement of Cd fluxes in roots of Thlaspi species and wheat.-Plant Physiol. 116: 1393–1401, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, M.N.V.: Cd toxicity and tolerance in vascular plants.-Environ. exp. Bot. 35: 525–545, 1995.

    Article  CAS  Google Scholar 

  • Quintero, J.M., Fournier, J.M., Benlloch, M.: Water transport in sunflower root systems: effects of ABA, Ca2+ status and HgCl2.-J. exp. Bot. 50: 1607–1612, 1999.

    Article  CAS  Google Scholar 

  • Rivetta, A., Negrini, N., Cocucci, M.: Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination.-Plant Cell Environ. 20: 600–608, 1997.

    Article  CAS  Google Scholar 

  • Salt, D.E., Rauser, W.E.: MgATP-dependent transport of phytochelatins across the tonoplasts of phytochelatins of oat roots.-Plant Physiol. 107: 1293–1301, 1995.

    PubMed  CAS  Google Scholar 

  • Verkleij, J.A.C., Koevoets, P., van't Riet, J., Bank, R., Nijdam, Y. Ernst, W.H.O.: Poly(γ-glutamylcysteinyl)glycines or phytochelatins and their role in Cd tolerance of Silene vulgaris.-Plant Cell Environ. 13: 913–921, 1990.

    Article  CAS  Google Scholar 

  • Vögeli-Lange, R., Wagner, G.J.: Subcellular localization of Cd and Cd-binding peptides in tobacco leaves.-Plant Physiol. 92: 1086–1093, 1990.

    PubMed  Google Scholar 

  • Vozáry, E., Jánosi, M., Horváth, G.: The effect of water and heavy metal stress on impedance parameters of developing pea seedlings.-In: Stress of Life. Stress and Adaptation from Molecules to Man. P. 130. Budapest 1997.

  • Walker, K.E., Taiz, L.: Characterization of the vacuolar proton pumps of the cortex, stele and tip of maize roots: effects of salinity.-Bot. Acta 101: 182–186, 1988.

    CAS  Google Scholar 

  • Yang, X., Baligar, V.C., Martens, D.C., Clark, R.B.: Cd effects on influx and transport of mineral nutrients in plant species.-J. Plant Nutr. 19: 643–656, 1996.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smýkalová, I., Zámečníková, B. The Relationship between Salinity and Cadmium Stress in Barley. Biologia Plantarum 46, 269–273 (2003). https://doi.org/10.1023/A:1022815013951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022815013951

Navigation