Skip to main content
Log in

Thermodynamics of Aqueous Diethylenetriaminepentaacetic Acid (DTPA) Systems: Apparent and Partial Molar Heat Capacities and Volumes of Aqueous H2DTPA3−, DTPA5−, CuDTPA3−, and Cu2DTPA from 10 to 55°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Apparent molar heat capacities and volumes have been determined for aqueous solutions of the mixed electrolytes Na5DTPA + NaOH, Na3CuDTPA + NaOH, and NaCu2DTPA + NaOH, and the single electrolyte Na3H2DTPA (DTPA=diethylenetriaminepentaacetic acid) at temperatures from 10 to 55°C. The experimental results have been analyzed in terms of Young's rule with the Guggenheim form of the extended Debye–Hückel equation and the Pitzer ion-interaction model. These calculations led to standard partial molar heat capacities and volumes for the species H2DTPA3−(aq), DTPA5−(aq), CuDTPA3−(aq), and Cu2DTPA(aq) at each temperature. The partial molar properties at 0.1 m ionic strength were also calculated. The standard partial molar properties were extrapolated to elevated temperatures with the revised Helgeson–Kirkham–Flowers (HKF) model. Values for the partial molar heat capacities from the HKF model have been combined with the literature data to estimate the ionization constants of H2DTPA3−(aq) and the formation constant of the CuDTPA3−(aq) copper complex at temperatures up to 300°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. E. Martell and R. M. Smith, Critical Stability Constants, Vol. 5, (Plenum Press, New York, 1982).

    Google Scholar 

  2. S. Chaberek, A. E. Frost, M. A. Doran, and N. J. Bicknell, J. Inorg. Nucl. Chem. 11, 184 (1959).

    Google Scholar 

  3. G. H. Mehdi and B. W. Budesinsky, J. Coord. Chem. 3, 287 (1974).

    Google Scholar 

  4. G. H. Jeffery, J. Bassett, J. Mendham, and R. C. Denney, Vogels Textbook of Quantitative Chemical Analysis, 5th edn., (Longman Press, England 1989).

    Google Scholar 

  5. H. B. Weiser, W. D. Milligan and W. D. Cook, J. Am. Chem. Soc. 64, 503 (1942).

    Google Scholar 

  6. P. Picker, P. A. Leduc, R. R. Philip, and J. E. Desnoyers, J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  7. P. Picker, E. Tremblay, and C. Jolicoeur, J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  8. D. G. Archer, J. Phys. Chem. Ref. Data 21, 793 (1992).

    Google Scholar 

  9. J. E. Desnoyers, C. de Visser, G. Perron, and P. Picker, J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  10. P. G. Hill, J. Phys. Chem. Ref. Data 19, 1233 (1990).

    Google Scholar 

  11. See, for example J. K. Hovey and P. R. Tremaine, Geochim. Cosmochim. Acta 50, 453 (1986); J. K. Hovey, Ph. D. Thesis, University of Alberta, Alberta, Canada (1988).

    Google Scholar 

  12. T. F. Young and M. B. Smith, J. Phys. Chem. 58, 716 (1954).

    Google Scholar 

  13. P. J. Reilly and R. H. Wood, J. Phys. Chem. 73, 4292 (1969).

    Google Scholar 

  14. E. M. Woolley and L. G. Hepler, Can. J. Chem. 55, 158 (1977).

    Google Scholar 

  15. J. A. Barbero, L. G. Hepler, K. G. McCurdy, and P. R. Tremaine, Can. J. Chem. 61, 2509 (1983).

    Google Scholar 

  16. G. J. Mains, J. W. Larson, and L. G. Hepler, J. Phys. Chem. 88, 1257 (1984).

    Google Scholar 

  17. P. M. Milyukov and N. V. Polenova, Russian J. Phys. Chem. 55(9), 1360 (1981); translated from Z. Fiz. Khim. 55, 2410 (1981).

    Google Scholar 

  18. F. J. Millero, in Activity Coefficients in Electrolyte Solutions, Vol. 2, M. Pytkowicz, ed., (CRC Press: Boca Raton, FL, 1979).

    Google Scholar 

  19. K. S. Pitzer, L. Brewer, G. N. Lewis, and M. Randall, Thermodynamics, revised edn. (McGraw-Hill, New York, 1961).

    Google Scholar 

  20. D. G. Archer and P. Wang, J. Phys. Chem. Ref. Data 19, 371 (1990).

    Google Scholar 

  21. C. Xiao and P. R. Tremaine, J. Chem. Thermodyn. 28, 43 (1996).

    Google Scholar 

  22. C. A. Angell, in Water. A Comprehensive Treasure: Vol. 7, F. Franks, ed. (Plenum Press, New York, 1982).

    Google Scholar 

  23. K. S. Pitzer, Activity Coefficients in Electrolyte Solutions, 2nd edn. (CRC Press, Boca Raton, 1991).

    Google Scholar 

  24. K. S. Pitzer, J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  25. K. S. Pitzer and J. J. Kim, J. Am. Chem. Soc. 96, 5701 (1974).

    Google Scholar 

  26. K. S. Pitzer, Pure Appl. Chem. 58, 1599 (1986).

    Google Scholar 

  27. J. K. Hovey, L. G. Hepler, and P. R. Tremaine, J. Phys. Chem. 92, 1323 (1988).

    Google Scholar 

  28. A. H. roux, G. Perron and J. E. Desnoyers, Can. J. Chem. 62, 878 (1984).

    Google Scholar 

  29. K. Nakamoto, Y. Morimoto, and A. E. Martell, J. Am. Chem. Soc. 85, 309 (1963).

    Google Scholar 

  30. R. E. Sievers and J. C. Bailar, Jr., Inorg. Chem. 1, 174 (1962).

    Google Scholar 

  31. B. Jezowska-Trzebiatowska, L. Latos-Grazynski, and H. Kozlowski, Inorg. Chim. Acta 21, 145 (1977).

    Google Scholar 

  32. G. R. Choppin, P. A. Biasden, and S. A. Khan, Inorg. Chem. 18, 1330 (1979).

    Google Scholar 

  33. D. C. Finnen, A. A. Pinkerton, W. R. Dunham, R. H. Sands, and Max O. Funk, Jr., Inorg. Chem. 30, 3960 (1991).

    Google Scholar 

  34. C. H. L. Kennard, Inorg. Chim. Acta 1, 347 (1967).

    Google Scholar 

  35. J. M. Lopez-Alcala, M. C. Puerat-Vizcaino, F. Gonzalea-Vilchez, E. N. Duesler, and R. E. Tapscott, Acta Crystallogr. C40, 939 (1984).

    Google Scholar 

  36. M. H. Abraham and M. H. Marcus, J. Chem. Soc. Faraday Trans. I 82, 3255 (1986).

    Google Scholar 

  37. Y. Marcus, Ion Solvation (Wiley, New York, 1985).

    Google Scholar 

  38. J. K. Hovey, and P. R. Tremaine, J. Phys. Chem. 89, 5541 (1985).

    Google Scholar 

  39. J. K. Hovey, L. G. Hepler, and P. R. Tremaine, J. Solution Chem. 15, 977 (1986).

    Google Scholar 

  40. J. K. Hovey, L. G. Hepler, and P. R. Tremaine, Can. J. Chem. 66, 881 (1988).

    Google Scholar 

  41. H. G. Helgeson, D. H. Kirkham, and G. g. Flowers, Am. J. Sci. 281, 1249 (1981).

    Google Scholar 

  42. J. C. Tanger and H. G. Helgeson, Am. J. Sci. 288, 19 (1988).

    Google Scholar 

  43. E. L. Shock, E. H. Oelkers, J. W. Johnson, D. A. Sverjensky, and H. C. Helgeson, J. Chem. Soc. Faraday Trans. 88, 803 (1992).

    Google Scholar 

  44. P. R. Tremaine, K. Sway, and J. A. Barbero, J. Solution Chem. 15, 1 (1986).

    Google Scholar 

  45. C. Xiao, PhD Thesis, Memorial University of Newfoundland, St. John's, Newfoundland, Canada (1997).

  46. G. Conti, P. Gianni, and E. Matteoli, Geochim. Cosmochim. Acta 56, 4125 (1992).

    Google Scholar 

  47. J. W. Johnson, E. H. Oelkers, and H. G. Helgeson, Comput. Geosci. 18, 899 (1992).

    Google Scholar 

  48. A. E. Martell, R. J. Motekaitis, A. R. Fried, J. S. Wilson and, D. T. MacMillan, Can. J. Chem. 53, 3471 (1975).

    Google Scholar 

  49. R. J. Motekaitis, D. Hayes, A. E. Martell, and W. W. Frenier, Can. J. Chem. 57, 1018 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, W.W., Tremaine, P.R. Thermodynamics of Aqueous Diethylenetriaminepentaacetic Acid (DTPA) Systems: Apparent and Partial Molar Heat Capacities and Volumes of Aqueous H2DTPA3−, DTPA5−, CuDTPA3−, and Cu2DTPA from 10 to 55°C. Journal of Solution Chemistry 28, 291–325 (1999). https://doi.org/10.1023/A:1022699626852

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022699626852

Navigation