Skip to main content
Log in

Transverse Spin Diffusion in a Dilute Spin-Polarized Degenerate Fermi Gas

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We re-examine the calculation of the transverse spin-diffusion coefficient in a dilute degenerate spin-polarized Fermi gas, for the case of s-wave scattering. The special feature of this limit is that the dependence of the spin diffusion coefficient on temperature and field can be calculated explicitly with no further approximations. This exact solution uncovers a novel intermediate behaviour between the high field spin-rotation dominated regime in which D ∝ H2, D ∝ T2 , and the low-field isotropic, collision dominated regime with D = D ∝ T2. In this intermediate regime, D⊥, ∥ ∝ T2 but D ≠ D. We emphasize that the low-field crossover cannot be described within the relaxation time approximation. We also present an analytical calculation of the self-energy in the s-wave approximation for a dilute spin-polarized Fermi gas, at zero temperature. This emphasizes the failure of the conventional Fermi-liquid phase space arguments for processes involving spin flips. We close by reviewing the evidence for the existence of the intermediate regime in experiments on weakly spin-polarized 3 He and 3 He– 4 He mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. J. Leggett and M. J. Rice, Phys. Rev. Lett. 20, 586 (1968) and 21, 506(E) (1968); A. J. Leggett, J. Phys. C 3, 448 (1970).

    Google Scholar 

  2. A. G. Aronov, JETP 46, 301 (1977); E. P. Bashkin, JETP Lett. 33, 8 (1981); C. Lhuillier and F. Laloë, J. Phys. (Paris) 43, 197 (1982); 43, 225 (1982); L. P. Lévy and A. E. Ruckenstein, Phys. Rev. Lett. 52, 1512 (1984); 55, 1427 (1985); A. E. Ruckenstein and L. P. Lévy, Phys. Rev. B 39, 183 (1989).

    Google Scholar 

  3. K. S. Bedell and C. Sanchez-Castro, Phys. Rev. Lett. 57, 854 (1986).

    Google Scholar 

  4. A. E. Meyerovich, Phys. Lett. A 107, 177 (1985).

    Google Scholar 

  5. A. A. Abrikosov and I. M. Khalatnikov, Rept. Progr. Phys. 22, 329 (1959).

    Google Scholar 

  6. L.-J. Wei, N. Kalechofsky, and D. Candela, Phys. Rev. Lett. 71, 879 (1993).

    Google Scholar 

  7. J. W. Jeon and W. J. Mullin, Phys. Rev. Lett. 62, 2691 (1989).

    Google Scholar 

  8. A. E. Meyerovich and K. A. Musaelian, Phys. Rev. B 47, 2897 (1992); J. Low Temp. Phys. 94, 249 (1994).

    Google Scholar 

  9. W. J. Mullin and J. W. Jeon, J. Low Temp. Phys. 88, 433 (1992).

    Google Scholar 

  10. A. E. Meyerovich and K. A. Musaelian, J. Low Temp. Phys. 95, 789 (1994); Phys. Rev. Lett. 72, 1710 (1994).

    Google Scholar 

  11. A. Pal and P. Bhattacharyya, J. Low Temp. Phys. 51, 265 (1983).

    Google Scholar 

  12. K. S. Bedell and D. E. Meltzer, Phys. Rev. B 33, 4543 (1986) and 34, 3475(E) (1986).

    Google Scholar 

  13. D. I. Golosov and A. E. Ruckenstein, Phys. Rev. Lett. 74, 1613 (1995).

    Google Scholar 

  14. I. A. Fomin, JETP Lett. 65, 749 (1997).

    Google Scholar 

  15. D. I. Golosov, Ph.D. thesis, Rutgers University, New Jersey, USA (1997).

  16. J. H. Ager, A. Child, R. König, J. R. Owers-Bradley, and R. M. Bowley, J. Low Temp. Phys. 99, 683 (1995).

    Google Scholar 

  17. D. Candela, D. R. McAllaster, and L.-J. Wei, Phys. Rev. B 44, 7510 (1991).

    Google Scholar 

  18. G. Nunes, Jr., C. Jin, D. L. Hawthorne, A. M. Putnam, and D. M. Lee, Phys. Rev. B 46, 9082 (1992).

    Google Scholar 

  19. J. R. Owers-Bradley, D. Wightman, R. M. Bowley, and A. Bedford, Physica B 165 & 166, 729 (1990).

    Google Scholar 

  20. A. E. Meyerovich, in Helium Three, W. P. Halperin and L. P. Pitaevskii (eds), North-Holland, Amsterdam (1990), p. 757; A. E. Meyerovich, in Progress in Low Temperature Physics, Vol. 11, D. F. Brewer (ed.), North-Holland, Amsterdam (1987), p.1.

    Google Scholar 

  21. The variational bounds were obtained by varying the relaxation time functional τ[W(p)] (defined as in Eq. (48) of Section III), over real functions W(p) such that W(p) > 0 for p < p < p and W(p) ≡ 0 otherwise.

  22. In Eq. (50) we have corrected the misprint of Ref. 13 (Eq. (10)).

  23. W. J. Mullin and K. Miyake, J. Low Temp. Phys. 53, 313 (1983).

    Google Scholar 

  24. G. A. Brooker and J. Sykes, Phys. Rev. Lett. 21, 279 (1968); J. Sykes and G. A. Brooker, Ann. Phys. 56, 1 (1970).

    Google Scholar 

  25. A. E. Meyerovich, S. Stepaniants, and F. Laloë, Phys. Rev. B 52, 6808 (1995).

    Google Scholar 

  26. V. M. Galitskii, Sov. Phys.-JETP 7, 104 (1958).

    Google Scholar 

  27. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2 [Landau and Lifshitz, Theoretical Physics, v. IX], Pergamon, New York (1980).

    Google Scholar 

  28. R. Sartor and C. Mahaux, Phys. Rev. C 21, 1546 (1980).

    Google Scholar 

  29. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics [Landau and Lifshitz, Theoretical Physics, v. X], Pergamon, New York (1981).

    Google Scholar 

  30. J. W. Jeon and W. J. Mullin, J. Phys. (Paris) 49, 1691 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golosov, D.I., Ruckenstein, A.E. Transverse Spin Diffusion in a Dilute Spin-Polarized Degenerate Fermi Gas. Journal of Low Temperature Physics 112, 265–301 (1998). https://doi.org/10.1023/A:1022693917461

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022693917461

Keywords

Navigation