Skip to main content
Log in

Thermodynamics of Cm(III) in Concentrated Salt Solutions: Carbonate Complexation in NaCl Solution at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The carbonate complexation reactions of Cm(III) were studied by time-resolved laser fluorescence spectroscopy in 0–6 m NaCl at 25°C. The ionic strength dependence of the stepwise formation constants for the carbonato complexes Cm(CO3) 3−2nn with n = 1, 2, 3, and 4 is described by modeling the activity coefficients of the Cm(III) species with Pitzer's ion-interaction approach. Based on the present results and literature data for Cm(III) and Am (III), the mean carbonate complexation constants at I = 0 are calculated to be: log β o101 =8.1 ±0.3, log β o102 =13.0 ± 0.6, log β o103 =15.2 ± 0.4, and log β o104 =13.0 ± 0.5. Combining these equilibrium constants at infinite dilution and the evaluated set of Pitzer parameters, a model is obtained, that reliably predicts the thermodynamics of bivalent actinide An(III) carbonate complexation in dilute to concentrated NaCl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Th. Fanghänel, J. I. Kim, P. Paviet, R. Klenze, and W. Hauser, Radiochim. Acta 66/67, 81 (1994).

    Google Scholar 

  2. Th. Fanghänel, J. I. Kim, R. Klenze, and Y. Kato, J. Alloys Comp. 225, 308 (1995).

    Google Scholar 

  3. Th. Könnecke, Th. Fanghänel, and J. I. Kim, Radiochim. Acta 76, 131 (1997).

    Google Scholar 

  4. P. Paviet, Th. Fanghänel, R. Klenze, and J. I. Kim, Radiochim. Acta 74, 99 (1996).

    Google Scholar 

  5. W. Aas, E. Steinle, Th. Fanghänel, and J. I. Kim, Radiochim. Acta, inprint.

  6. Th. Fanghänel, H. T. Weger, Th. Könnecke, V. Neck, P. Paviet-Hartmann, E. Steinle, and J. I. Kim, Radiochim. Acta 82, 47 (1998).

    Google Scholar 

  7. Th. Fanghänel, H. T. Weger, G. Schubert, and J. I. Kim, Radiochim. Acta 82, 55 (1998).

    Google Scholar 

  8. A. R. Felmy, D. Rai, and R. W. Fulton, Radiochim. Acta 50, 193 (1990).

    Google Scholar 

  9. R. Lundquist, Acta Chem. Scand A36, 741 (1982).

    Google Scholar 

  10. G. Meinrath and J. I. Kim, Radiochim. Acta 52/53, 29 (1991).

    Google Scholar 

  11. R. R. Rao and A. Chatt, Radioanal. Nucl. Chem. Art. 124, 211 (1988).

    Google Scholar 

  12. A. Chatt and R. R. Rao, Mat. Res. Soc. Symp. Proc. 127, 897 (1989).

    Google Scholar 

  13. R. R. Rao and A. Chatt, Radiochim. Acta 54, 181 (1991).

    Google Scholar 

  14. J. I. Kim, R. Klenze, H. Wimmer, W. Runde, and W. Hauser, J. Alloys Comp. 213/214, 333 (1994).

    Google Scholar 

  15. R. R. Rao, D. Rai, A. R. Felmy, R. W. Fulton, and C. F. Novak, Radiochim. Acta 75, 141 (1996).

    Google Scholar 

  16. Th. Fanghänel, and J. I. Kim, J. Alloys Comp. 271–273, 728 (1998).

    Google Scholar 

  17. R. J. Silva, G. Bidoglio, M. H. Rand, P. R. Robouch, H. Wanner, and I. Puigdomenech, Chemical Thermodynamics of Americium (Elsevier, Amsterdam, 1995).

    Google Scholar 

  18. H. Nitsche, E. M. Standifer, and R. J. Silva, Radiochim. Acta 46, 185 (1989).

    Google Scholar 

  19. P. Robouch, PhD Thesis, Universite Louis Pasteur, Strasbourg, Report CEA-R-5473 (1987).

  20. G. Meinrath, PhD Thesis, Technische Universität München, München, Germany, 1991.

  21. W. Runde, Thesis, Technische Universität München, München, Germany, 1993; W. Runde and J. I. Kim, Report RMC 01094, Inst. für Radiochem., Techn. Univ. München, München, Germany, 1994.

  22. G. Bidoglio, Radiochem. Radioanal. Lett. 53, 45 (1982).

    Google Scholar 

  23. M. F. Bernkopf and J. I. Kim, Report RCM-02884, Inst. für Radiochem, Techn. Univ. München, München, Germany, 1984.

  24. D. Ferri, I. Grenthe, S. Hietanen, and F. Salvatore, Acta Chem. Scand. A37, 359 (1983).

    Google Scholar 

  25. E. Giffaut and P. Vitorge, Mat. Res. Soc. Symp. Proc. 294, 747 (1993).

    Google Scholar 

  26. E. Giffaut, PhD Thesis, Universite de Paris-Sud U.F.R. Scientifique D'Orsay, Paris, 1994.

  27. K.S. Pitzer, Activity Coefficients in Electrolyte Solutions, 2nd edn. (CRC Press, Boca Raton, 1991).

    Google Scholar 

  28. C.E. Harvie, N. Moller, and J. H. Weare, Geochim. Cosmochim. Acta 48, 723 (1984).

    Google Scholar 

  29. L. Rao, D. Rai, A. R. Felmy, R. W. Fulton, and C. F. Novak, Radiochim. Acta 75, 141 (1996)

    Google Scholar 

  30. Th. Fanghänel, V. Neck, and J. I. Kim, Radiochim. Acta 69, 169 (1995).

    Google Scholar 

  31. J. Fuger, I. L. Khodakovsky, E. I. Sergeyeva, V. A. Medvedev, and J. D. Navratil, The Chemical Thermodynamics of Actinide Elements and Compounds, Part 12. The Actinide Aqueous Inorganic Complexes (IAEA International Atomic Energy Agency, Vienna, Austria, 1992).

    Google Scholar 

  32. R. H. Byrne and E. R. Sholokovitz, in Handbook on the Physics and Chemistry of Rare Earths Vol. 23, Chap. 158, Sect. 497, K. A. Gschneidner Jr. and L. Eyring (North Holland, Amsterdam eds., 1996).

    Google Scholar 

  33. I. Grenthe and H. Wanner, Report NEA-TDB-2, OECD Nuclear Energy Agency, Data Bank, F-91191 Gif-sur-Yvette, France (1989).

  34. K. J. Cantrell and R. H. Byrne, J. Solution Chem. 16, 555 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanghänel, T., Könnecke, T., Weger, H. et al. Thermodynamics of Cm(III) in Concentrated Salt Solutions: Carbonate Complexation in NaCl Solution at 25°C. Journal of Solution Chemistry 28, 447–462 (1999). https://doi.org/10.1023/A:1022664013648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022664013648

Navigation