Skip to main content
Log in

A Direct Approach to Homoclinic Orbits in the Fast Dynamics of Singularly Perturbed Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Homoclinic orbits in the fast dynamics of singular perturbation problems are usually analyzed by a combination of Fenichel's invariant manifold theory with general transversality arguments (see Ref. 29 and the Exchange Lemma in Ref. 16). In this paper an alternative direct approach is developed which uses a two-time scaling and a contraction argument in exponentially weighted spaces. Homoclinic orbits with one last transition are treated and it is shown how ε-expansions can be extracted rigorously from this approach. The result is applied to a singularity perturbed Bogdanov point in the FitzHugh–Nagumo system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Arnold, V. I., Afrajmovich, V. S., Il'yashenko, Y. S., and Shil'nikov, L. P. (1994). Dynamical Systems V: Bifurcation Theory, Springer, New York.

    Google Scholar 

  2. Baer, S. M., and Erneux, T. (1986). Singular Hopf bifurcation to relaxation oscillations. SIAM J. Appl. Math. 46(5), 721–739.

    Google Scholar 

  3. Beyn, W.-J. (1990). The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Anal. 10, 379–405.

    Google Scholar 

  4. Beyn, W.-J. (1994). Numerical analysis of homoclinic orbits emanating from a Takens-Bogdanov point. IMA J. Numer. Anal. 14, 381–410.

    Google Scholar 

  5. Bohl, E. (1978). P-boundedness of inverses of nonlinear operators. ZAMM 58, 277–287.

    Google Scholar 

  6. Casten, R. G., Cohen, H., and Lagerstrom, P. A. (1975). Perturbation analysis of an approximation to the Hodgkin-Huxley theory. Q. Appl. Math. 32, 365–402.

    Google Scholar 

  7. Chay, T. R., and Rinzel, J. (1985). Bursting, beating, and chaos in an excitable membrane model. Biophys. J. 47, 357–366.

    Google Scholar 

  8. Chow, S.-N., Hale, J., and Mallet-Paret, J. (1980). An example of bifurcation to homoclinic orbits. J. Diff. Eq. 37, 351–373.

    Google Scholar 

  9. Chow, S.-N., and Lin, X.-B. (1990). Bifurcation of a homoclinic orbit with a saddle-node equilibrium. Diff. Integral Eq. 3, 435–466.

    Google Scholar 

  10. Diener, M. (1981). Étude générique des canards, IRMA, Strasbourg.

    Google Scholar 

  11. Dumortier, F., and Roussarie, R. (1996). Canard Cycles and Center Manifolds, AMS, Vol. 121,No. 577.

  12. Eckhaus, W. (1983). Relaxation oscillations including a standard chase on french ducks. In Lecture Notes in Mathematics, Vol. 985, Springer, New York, pp. 449–494.

    Google Scholar 

  13. Fenichel, N. (1979). Geometric singular perturbation theory for ordinary differential equations. J. Diff. Eq. 31, 53–98.

    Google Scholar 

  14. Guckenheimer, J., and Holmes, P. (1990). Nonlinear Oscillations, Dynamical systems, and Bifurcations of Vector Fields (3rd printing), Appl. Math. Sci., Vol. 42, Springer, New York.

    Google Scholar 

  15. Hastings, S. P. (1982). Single and multiple pulse waves for the FitzHugh-Nagumo equations. SIAM J. Appl. Math. 42, 247–260.

    Google Scholar 

  16. Jones, C. K. R. T., and Kopell, N. (1994). Tracking invariant manifolds with differential forms in singularly perturbed systems. J. Diff. Eq. 108, 64–88.

    Google Scholar 

  17. Koper, M. (1995). Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram. Physica D 80, 72–94.

    Google Scholar 

  18. Krupa, M., Sandstede, B., and Szmolyan, P. (1997). Fast and slow waves in the FitzHugh-Nagumo equation. J. Diff. Eq. 133, 49–97.

    Google Scholar 

  19. Lin, X.-B. (1990). Using Melnikov's method to solve Silnikov's problems. Proc. Roy. Soc. Edinburgh 116A, 295–325.

    Google Scholar 

  20. Lin, X.-B. (1990). Heteroclinic bifurcation and singularly perturbed boundary value problems. J. Diff. Eq. 84, 319–382.

    Google Scholar 

  21. O'Malley, R. E. (1991). Singular Perturbation Methods for Ordinary Differential Equations, Applied Mathematical Sciences, Vol. 89, Springer, New York.

    Google Scholar 

  22. Palmer, K. J. (1984). Exponential dichotomies and transversal homoclinic points. J. Diff. Eq. 55, 225–256.

    Google Scholar 

  23. Sell, G. R. (1985). Smooth linearization near a fixed point. Am. J. Math. 107, 1035–1091.

    Google Scholar 

  24. Shub, M. (1987). Global Stability of Dynamical Systems, Springer, New York.

    Google Scholar 

  25. Stiefenhofer, M. (1995). Singuläre Störung und Verzweigung bei Schleimpilzen, Ph.D. thesis, University of Konstanz, Hartung-Gorre Verlag, Konstanz.

    Google Scholar 

  26. Stiefenhofer, M. (1996). Singular perturbation with limit points in the fast dynamics. DFG-Schwerpunktprogramm: Dynamik, Analysis, effiziente Simulation und Ergodentheorie. ZAMP 49, 730–758.

    Google Scholar 

  27. Stiefenhofer, M. (1996). Singular perturbation with Hopf points in the fast dynamics. DFG-Schwerpunktprogramm: Dynamik, Analysis, effiziente Simulation und Ergodentheorie. ZAMP 49, 602–649.

    Google Scholar 

  28. Stiefenhofer, M. (1997). Singular perturbation with Bogdanov points in the fast dynamics. DFG-Schwerpunktprogramm: Dynamik, Analysis, effiziente Simulation und Ergodentheorie. Preprint No. 10.

  29. Szmolyan, P. (1991). Transversal heteroclinic and homoclinic orbits in singular perturbation problems. J. Diff. Eq. 92, 252–281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by DFG Schwerpunktprogramm “Ergodentheorie, Analysis und effiziente Simulation dynamischer Systeme.”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyn, WJ., Stiefenhofer, M. A Direct Approach to Homoclinic Orbits in the Fast Dynamics of Singularly Perturbed Systems. Journal of Dynamics and Differential Equations 11, 671–709 (1999). https://doi.org/10.1023/A:1022663512855

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022663512855

Navigation