Skip to main content
Log in

Theoretical Issues in the Calculation of the Electrical Resistivity of Plasmas

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We recall briefly how the Ziman theory of electrical conductivity, first proposed for solids and liquid metals, has been extended to the case of plasmas. The physical assumptions and parameters entering the formula are analyzed. A self-consistent model of electronic and ionic structure of plasmas is then described and applied to the calculation of the resistivity. Results obtained for aluminum are shown and compared to measurements done by Benage, along a thermo-dynamic path going from normal density at melting to 0.03 compression at 41 eV. The important differences between theory and experiment are discussed. The uncertainties inherent to the theory are emphasized, and physical effects not taken into account in the theory are discussed. Finally, the need for accurate measurements is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Rinker, Phys. Rev. B 31:4207 (1985).

    Google Scholar 

  2. J. M. Ziman, Electrons and Phonons, N. F. Mott, E. C. Bullard, and D. H. Wilkinson, eds. (Clarendon, Oxford, 1960), p. 220.

    Google Scholar 

  3. R. Evans, B. L. Gyorffy, N. Szabo, and J. M. Ziman, The Properties of Liquid Metals, S. Takeuchi, ed. (Wiley, New York, 1973), p. 319.

    Google Scholar 

  4. P. Hohenberg and W. Kohn, Phys. Rev. B 136:864 (1964); W. Kohn and L. J. Sham, Phys. Rev. A 140:1133 (1965).

    Google Scholar 

  5. N. D. Mermin, Phys. Rev. A 137:1441 (1965).

    Google Scholar 

  6. M. W. C. Dharma-wardana and F. Perrot, Density Functional Theory, E. K. U. Gross and R. M. Dreizler, eds. (Plenum, New York, 1995).

    Google Scholar 

  7. J. Friedel, Philos. Mag. 43:153 (1952); Adv. Phys. 3:446 (1954).

    Google Scholar 

  8. L. Dagens, J. Phys. (Paris) 34:879 (1973); J. Phys. C 5:2333 (1972).

    Google Scholar 

  9. F. Perrot, Phys. Rev. A 25:489 (1982).

    Google Scholar 

  10. F. Perrot, Phys. Rev. A 42:4871 (1990); Phys. Rev. A 47:570 (1993).

    Google Scholar 

  11. F. Lado, S. M. Foiles, and N. W. Ashcroft, Phys. Rev. A 28:2374 (1983)

    Google Scholar 

  12. M. Shimoji, Liquid Metals (Academic, London, 1977), p. 254.

    Google Scholar 

  13. H. Minoo and C. Deutsch, Phys. Rev. A 14:840 (1976).

    Google Scholar 

  14. D. B. Boercker, F. J. Rogers, and H. E. DeWitt, Phys. Rev. A 25:1623 (1982).

    Google Scholar 

  15. S. Ichimaru and S. Tanaka, Phys. Rev. A 32:1790 (1984).

    Google Scholar 

  16. F. Perrot and M. W. C. Dharma-wardana, Phys. Rev. A 36:238 (1987).

    Google Scholar 

  17. J. G. Gasser, M. Mayoufi, and M. C. Bellisent-Funel, J. Phys. Condens. Matter 1:2409 (1989).

    Google Scholar 

  18. A. Berthault, L. Arlès, and J. Matricon, Int. J.Thermophys. 7:167 (1986).

    Google Scholar 

  19. M. Boivineau, L. Arlès, J. M. Vermeulen, and Th. Thévenin, Int. J. Thermophys. 14:427 (1993).

    Google Scholar 

  20. M. Boivineau, L. Arlès, J. M. Vermeulen, and Th. Thévenin, Physica B 190:31 (1993).

    Google Scholar 

  21. M. Boivineau, J. B. Charbonnier, J. M. Vermeulen, and Th. Thévenin, High Temp.-High Press. 25:311 (1993).

    Google Scholar 

  22. Th. Thévenin, L. Arlès, M. Boivineau, and J. M. Vermeulen, Int. J. Thermophys. 14:441 (1993).

    Google Scholar 

  23. M. Boivineau, H. Colin, J. M. Vermeulen, and Th. Thévenin, Int. J. Thermophys. 17:1001 (1996).

    Google Scholar 

  24. R. L. Shepherd, D. R. Kania, and L. A. Jones, Phys. Rev. Lett. 61:1278 (1988).

    Google Scholar 

  25. A. W. DeSilva and H. J. Kunze, Phys. Rev. E61:4448 (1994).

    Google Scholar 

  26. J. F. Benager, Jr., W. R. Shanahan, E. G. Sherwood, L. A. Jones, and R. J. Trainor, Phys. Rev. E49:4391 (1994).

    Google Scholar 

  27. J. F. Benage, Jr., personal communication (Los Alamos National Laboratory, Los Alamos, NM, 1995).

  28. W. F. Huebner, T-4 Handbook of Material Properties Data Bases, Vol. 1c. Equations of State, K. S. Holian, ed. (Los Alamos National Laboratory, LA-10160-MS, Los Alamos, NM, 1984).

    Google Scholar 

  29. L. Spitzer and R. Härm, Phys. Rev. 89:977 (1953).

    Google Scholar 

  30. Y. H. Lee and R. M. More, Phys. Fluids 27:1273 (1984).

    Google Scholar 

  31. F. Perrot and M. W. C. Dharma-wardana, Phys. Rev. E52:5352 (1995).

    Google Scholar 

  32. O. Entin-Wohlman and Y. Imry, Phys. Rev. B 45:1590 (1992).

    Google Scholar 

  33. H. M. Milchberg, R. R. Freeman, S. Davey, and R. M. More, Phys. Rev. Lett. 61:2364 (1988); A. N. Mostovych and Y. Chan, Phys. Rev. Lett. 79:5094 (1997).

    Google Scholar 

  34. A. Ng, P. Celliers, F. Perrot, M. W. C. Dharma-wardana, R. M. More, Y. H. Lee, and G. Rinker, Phys. Rev. Lett. 72:681 (1994); M. W. C. Dharma-wardana and F. Perrot, Phys. Lett. A 163:223 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrot, F., Dharma-wardana, M.W.C. Theoretical Issues in the Calculation of the Electrical Resistivity of Plasmas. International Journal of Thermophysics 20, 1299–1311 (1999). https://doi.org/10.1023/A:1022639928248

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022639928248

Navigation