Skip to main content
Log in

Determination of Thermophysical Properties of Fluid Metals by Wire-Explosion Experiments

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Wire explosion experiments were used to obtain thermophysical properties of tungsten. These properties are specific heat, thermal expansion coefficient, compressibility, and electrical and thermal conductivities and their dependences on temperature. There are strong indications that the emissivity in the liquid range should be dependent on temperature. A proposal has been made for determining the emissivity from comparison of experiments with model calculations. The temperature range is extended up to 10,000 K, and first indications for the near-critical-point behavior were obtained. Other properties such as diffusivity, viscosity, and surface tension may possibly also be derived in this range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. G. Chace and H. K. Moore (eds.), Exploding Wires, Vols. I–IV (Plenum, New York, 1959, 1961, 1964, 1967).

    Google Scholar 

  2. G. R. Gathers, Rep. Prog. Phys. 49:341 (1986).

    Google Scholar 

  3. G. Pottlacher, in Advances in Material Science and Engineering, 3rd Suppl., R. W. Kahn, ed. (Pergamon, Oxford, 1992), p. 525.

    Google Scholar 

  4. U. Seydel, W. Fucke, and H. Wadle, Die Bestimmung thermophysikalischer Daten flüssiger hochschmelzender Metalle mit schnellen Pulsaufheizexperimenten (Verlag Dr. Peter Mannhold, Düsseldorf, 1980).

    Google Scholar 

  5. A. Berthault, L. Arles, and J. Matricon, Int. J. Thermophys. 7:167 (1986)

    Google Scholar 

  6. R.S. Hixson and M. A. Winkler, Int. J. Thermophys. 11:709 (1990).

    Google Scholar 

  7. E. Kaschnitz, Doctoral thesis (Technical University of Graz, Graz, Austria, 1992).

  8. A. Kloss, T. Motzke, R. Großjohann, and H. Hess, Phys. Rev. E 54:5851 (1996).

    Google Scholar 

  9. A. Kloss, H. Hess, H. Schneidenbach, and R. Großjohann, Int. J. Thermophys. 20:1201 (1999).

    Google Scholar 

  10. A. Kloss, A. D. Rakhel, and H. Hess, Int. J. Thermophys. 19:983 (1998).

    Google Scholar 

  11. J.-P. Hiernaut, R. Beukers, M. Hoch, T. Matsui, and R. W. Ohse, High Temp.-High Press. 18:627 (1986).

    Google Scholar 

  12. R. W. Ohse (ed.), Handbook of Thermodynamic and Transport Properties of Alkali Metals (Blackwell Scientific, Oxford, 1985), p. 432.

    Google Scholar 

  13. A. D. Rakhel, Int. J. Thermophys. 17:1011 (1996).

    Google Scholar 

  14. D. A. Young, Report UCRL-52352 (Lawrence Livermore Laboratory, 1977).

  15. A. Likalter, Phys. Rev. B 53:4386 (1996); Teplofiz. vys. temp. 23:465 (1985).

    Google Scholar 

  16. H. Hess, Phys. Chem. Liq. 30:251 (1995).

    Google Scholar 

  17. H. Hess, Z. Metallkd. 89:388 (1998).

    Google Scholar 

  18. F. Hensel, S. Jüngst, F. Noll, and R. Winter, in Localization and Metal-Insulator Transitions, H. Fritzsche and D. Adler, eds. (Plenum, New York, 1985), p. 109.

    Google Scholar 

  19. J. M. H. Levelt Sengers, in Experimental Thermodynamics, Vol. II, B. LeNeindre and B. Vodar, eds. (Butterworths, London, 1972), p. 658 ff.

    Google Scholar 

  20. E. Arpaci and M. G. Frohberg, Z. Metallkd. 75:614 (1984).

    Google Scholar 

  21. J. M. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  22. F. Hensel, 6th General Conference of the European Physical Society, “Trends in Physics,” Prague (1984).

  23. P. A. Egelstaff, An Introduction to the Liquid State (Clarendon, Oxford, 1994).

    Google Scholar 

  24. D. R. Lide (ed.), Handbk. Chem. Phys., 73rd ed. (CRC Press, Boca Raton, FL, 1992–1993), p. 10–305.

    Google Scholar 

  25. C. Zwikker, Akad. Amsterdam Versl. 34:469 (1925).

    Google Scholar 

  26. E. Kaschnitz, G. Pottlacher, and L. Windholz, High Press. Res. 4:558 (1990).

    Google Scholar 

  27. T. Iida and R. I. L. Guthrie, The Physical Properties of Liquid Metals (Clarendon, Oxford, 1993), p. 122.

    Google Scholar 

  28. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman, Selected Values of the Thermodynamic Properties of the Elements (American Society for Metals, Metals Park, OH, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, H., Kloss, A., Rakhel, A. et al. Determination of Thermophysical Properties of Fluid Metals by Wire-Explosion Experiments. International Journal of Thermophysics 20, 1279–1288 (1999). https://doi.org/10.1023/A:1022635727340

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022635727340

Navigation