Skip to main content
Log in

A zinc–air cell employing a porous zinc electrode fabricated from zinc–graphite-natural biodegradable polymer paste

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Porous zinc anodes have been fabricated from a mixture of zinc and graphite powder using gelatinized agar solution as the binding agent. Agar is a biodegradable polysaccharide polymer extracted from marine algae. The graphite content and the agar solution concentration were varied to find the best electrode composition. Zinc–air cells were fabricated using the porous zinc anode, a commercially available air cathode sheet and KOH electrolyte in the form of elastic jelly granules. The electrode performance was evaluated from the zinc–air cell galvanostatic discharge capability. In the cell design, a thin agar layer was introduced between the electrode-gelled electrolyte interfaces, resulting in substantially improved cell discharge performance. The inclusion of particulate graphite into the electrode did not enhance the electrode performance due to the formation of a graphite-rich layer, which obscured the electrode porosity. A zinc–air cell employing the optimized porous zinc electrode demonstrated a capacity of 2066 mA h and specific energy density of 443 Wh kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.E. Bagshaw, J. Power Sources 67 (1997) 105.

    Google Scholar 

  2. J.J. Kriegsmann and H.Y. Cheh, J. Power Sources 77 (1999)127.

    Google Scholar 

  3. X. Jin and J. Lu, J. Power Sources 93 (2001) 8.

    Google Scholar 

  4. C.A. Marozzi and A.C. Chialvo, Electrochim. Acta 45 (2000) 2111.

    Google Scholar 

  5. P. Novak, W. Scheifele, M. Winter and O. Haas, J. Power Sources 68 (1997) 267.

    Google Scholar 

  6. P. Periasamy, B.R. Babu and S.V. Iyer, J. Power Sources 58 (1996)35.

    Google Scholar 

  7. G. Lindbergh, Electrochim. Acta 42 (1997) 1239.

    Google Scholar 

  8. A. Lasia, J. Electroanal. Chem. 428 (1997) 155.

    Google Scholar 

  9. A. Lasia, J. Electroanal. Chem. 397 (1995) 27.

    Google Scholar 

  10. J. Newman and W. Tiedemann, AIChE J. 21 (1975) 25.

    Google Scholar 

  11. P.A. Barbic, L. Binder, S. Voss, F. Hofer and W. Grogger, J. Power Sources 79 (1999) 271.

    Google Scholar 

  12. A. Himy, Silver-Zinc Battery: Phenomena and Design Principles,1stedn (Vantage Press, 1986), p. 28.

  13. D. Coates, E. Ferreira and A. Charkey, J. Power Sources 65 (1997)109.

    Google Scholar 

  14. J.L. Zhu and Y.H. Zhou, J. Power Sources 73 (1998) 266.

    Google Scholar 

  15. R. Shivkumar, G.P. Kalaignan and T. Vasudevan, J. Power Sources 75 (1998) 90.

    Google Scholar 

  16. S.U. Falk and A.J. Salkind, ‘Alkaline Storage Batteries’ (J. Wiley & Sons, New York, 1969), p. 240.

    Google Scholar 

  17. J. McBreen and E. Gagnon, Electrochim. Acta 26 (1981) 1439.

    Google Scholar 

  18. R. Othman, A.H. Yahaya and A.K. Arof, J. New Mat. Electrochem.Systems, 5 (2002) 177.

    Google Scholar 

  19. A. Du.eld, P.J. Mitchell, D.W. Shield and N. Kumar, in L.J. Pearce (Ed.), ‘Power Sources 11', International Power Sources Symposium Committee (Leatherhead, UK, 1987), p. 253.

    Google Scholar 

  20. Lucas Industries Ltd, US Patent 4 407 915 (1983).

  21. K. Bass, P.J. Mitchell, G.D. Wilcox and J. Smith, J. Power Sources 24 (1988) 21.

    Google Scholar 

  22. R. Othman, A.H. Yahaya and A.K. Arof, in O. Savadogo (Ed.), ‘New Materials for Electrochemical Systems IV', Extended Abstract of the 4th International symposium on ‘New Materials for Electrochemical Systems', 9–13 July 2001, Montreal, Quebec, Canada (Ecole Polytechnique de Montreal, 2001) p. 300.

  23. R. Falshaw, R.H. Furneaux and D.E. Stevenson, Carbohydr. Res. 308 (1998) 107–115.

    Google Scholar 

  24. E. Marinho-Soriano, J. Biotechnol. 89 (2001) 81–84.

    Google Scholar 

  25. P. Singleton and D. Sainsbury, ‘Dictionary of Microbiology and Molecular Biology', 2nd edn (J. Wiley & Sons, 1988), p. 19.

  26. H.W. Ockerman, ‘Source Book for Food Scientists’ (AVI Publishing Co. 1978), pp. 563–568.

  27. T. Singh, ‘Agar and Agar Production', Infofish Technical Handbook 7 (Infofish, 1992).

  28. R. Chandra and R. Rustgi, Prog. Polym. Sci. 23 (1998) 1273.

    Google Scholar 

  29. D.W. McComsey, in D. Linden (Ed.), ‘Handbook of Batteries', 3rd edn (McGraw-Hill, New York, 2002), 8.1.

    Google Scholar 

  30. R.F. Scarr, J.C. Hunter and P.J. Slezak, in D. Linden (Ed.), op. cit.[29], 10.1.

    Google Scholar 

  31. N.C. Cahoon and H.W. Holland, in G.W. Heise and N.C. Cahoon (Eds), ‘The Primary Battery', Vol. 1 (J. Wiley & Son, New York, 1971), p. 239.

    Google Scholar 

  32. C.K. Morehouse, R. Glicksman and G.S. Lozier, in S.N. Levine (Ed.), ‘New Techniques for Energy Conversion’ (Dover Publications, New York, 1961), p. 358.

    Google Scholar 

  33. R.P. Hamlen and T.B. Atwater, in D. Linden (Ed.), op. cit. [29],38.1.

    Google Scholar 

  34. T.R. Crompton, ‘Battery Reference Book', 3rd edn (Newnes,2000), p. 26/3.

  35. A.J. Appleby and M. Jacquier, J. Power Sources 1 (1976/77) 17.

    Google Scholar 

  36. D.A.J. Rand, J. Power Sources 4 (1979) 101.

    Google Scholar 

  37. J. McBreen in J.O'M. Bockris, B.E. Conway, E. Yeager and R.E. White (Eds), ‘Comprehensive Treatise of Electrochemistry', Vol. 3 (Plenum Press, New York, 1981), p. 303.

    Google Scholar 

  38. R. Othman, W.J. Basirun, A.H. Yahaya and A.K. Arof, J. Power Sources 103 (2001) 34.

    Google Scholar 

  39. V.S. Bagotzky and A.M. Skundin, ‘Chemical Power Sources’ (Academic Press, New York, 1980), p. 242.

    Google Scholar 

  40. M.P. Vinod and K. Vijayamohanan, J. Power Sources 89 (2000)88.

    Google Scholar 

  41. I. Lakatos and J. Lakatos-Szabo, Colloids Surf. A 141 (1998) 425.

    Google Scholar 

  42. D.M. Concidine (Ed.), ‘Van Nostrand's Scienti.c Encyclopedia',6th edn (Van Nostrand Reinhold, Princeton, NJ, 1983), pp. 907–909 and 1437.

    Google Scholar 

  43. McGraw-Hill ‘Encyclopedia of Science and Technology', D.N. Lapedes (Editor-in-Chief), Vol. 1 (McGraw-Hill, New York,1977), p. 128.

    Google Scholar 

  44. J.V. Smith (Ed.), ‘X-Ray Powder Data File’, Inorganic volume (ASTM, 1967), 5-0664.

  45. M. Izaki and T. Omi, J. Electrochem. Soc. 144 (1997) 1949.

    Google Scholar 

  46. J.R. Goldstein, I. Brown and B. Koretz, J. Power Sources 80 (1999) 171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.K. Arof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Othman, R., Yahaya, A. & Arof, A. A zinc–air cell employing a porous zinc electrode fabricated from zinc–graphite-natural biodegradable polymer paste. Journal of Applied Electrochemistry 32, 1347–1353 (2002). https://doi.org/10.1023/A:1022619414787

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022619414787

Navigation