Skip to main content
Log in

Application of the Bjerrum Association Model to Electrolyte Solutions. IV. Apparent Molar Heat Capacities and Compressibilities in Water and Aprotic Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The Bjerrum association model, which has already been applied successfully to volumes and enthalpies of dilution of electrolyte solutions, has now been extended to apparent molar heat capacities and compressibilities of these systems. The proposed method of calculation, which takes into account the relaxation effect observed in second derivatives of the excess Gibbs free energy, can be used to extrapolate to infinite dilution the experimental data for systems showing a wide range of association constants in acetonitrile, propylene carbonate, and water. The concentration dependence of the thermodynamic properties can be reproduced quantitatively by the addition of one or two virial coefficients. Literature data for C P,2,ψ and K S,2,ψ of electrolytes in aprotic solvents were refitted with this equation. For dissociated or slightly associated systems (K A < 10), the standarY o2 d infinite dilution quantities () are in excellent agreement with literature values. For systems with high K A, Y o2 obtained by the model are systematically lower than those reported in the literature. This is not surprising, since the traditional method of extrapolation using the Debye–Hückel limiting law or the Pitzer equation does not take association into account. A computer software that performs the calculations for the application of the Bjerrum model to thermodynamic properties has been designed and is presented in the appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Marcus, Ion Properties (Dekker, New York, 1997).

    Google Scholar 

  2. R. Zana, G. Perron, and J. E. Desnoyers, J. Solution Chem. 8, 729 (1979).

    Google Scholar 

  3. G. Perron, A. Hardy, J.-C. Justice, and J. E. Desnoyers, J. Solution Chem. 22, 1159 (1993).

    Google Scholar 

  4. G. Perron, L. Couture, D. Lambert, and J. E. Desnoyers, J. Electroanal. Chem. 355, 277 (1993).

    Google Scholar 

  5. G. Perron, G. Trudeau, and J. E. Desnoyers, Can. J. Chem. 65, 1402 (1987).

    Google Scholar 

  6. J. I. Lankford and C. M. Criss, J. Solution Chem. 16, 885 (1987).

    Google Scholar 

  7. H. F. Holmes, R. H. Busey, J. M. Simonson, and R. E. Mesmer, J. Chem. Thermodyn. 26, 271 (1994).

    Article  Google Scholar 

  8. I. Davidson, G. Perron, and J. E. Desnoyers, Can. J. Chem. 59, 2212 (1981).

    Google Scholar 

  9. J. I. Lankford, W. T. Holladay, and C. M. Criss, J. Solution Chem. 13, 699 (1984).

    Google Scholar 

  10. J. I. Lankford and C. M. Criss, J. Solution Chem. 16, 753 (1987).

    Google Scholar 

  11. J.-F. Côté, G. Perron, J. E. Desnoyers, G. C. Benson, and B. C.-Y. Lu, J. Solution Chem., 27, 685 (1998).

    Google Scholar 

  12. J.-F. Côté, J. E. Desnoyers, and J.-C. Justice, J. Solution Chem. 25, 113 (1996).

    Google Scholar 

  13. N. Bjerrum, K. Dan. Vidensk. Selskab. 7, 9 (1926).

    Google Scholar 

  14. P. Picker, P.-A. Leduc, P. R. Philip, and J. E. Desnoyers, J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  15. J. E. Desnoyers, C. de Visser, G. Perron, and P. Picker, J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  16. J.-F. Côté, G. Perron, and J. E. Desnoyers, J. Solution Chem., 27, 707 (1998).

    Google Scholar 

  17. J.-L. Fortier, P.-A. Leduc, and J. E. Desnoyers, J. Solution Chem., 3, 323 (1974).

    Google Scholar 

  18. J. G. Mathieson and B. E. Conway, J. Chem. Soc. Faraday Trans. I 70, 752 (1974).

    Google Scholar 

  19. D. G. Archer and P. Wang, J. Phys. Chem. Ref. Data 19, 371 (1990).

    Google Scholar 

  20. C. Xiao and P. R. Tremaine, J. Chem. Thermodyn. 28, 43 (1996).

    Google Scholar 

  21. D. E. White, A. L. Doberstein, J. A. Gates, D. M. Tillett, and R. H. Wood, J. Chem. Thermodyn. 19, 251 (1987).

    Google Scholar 

  22. C. C. Nathan, W. E. Wallace, and A. L. Robinson, J. Am. Chem. Soc. 65, 790 (1943).

    Google Scholar 

  23. J. D. Frantz and W. L. Marshall, Am. J. Sci. 282, 1666 (1982).

    Google Scholar 

  24. J. L. Oscarson, R. M. Izatt, P. R. Brown, Z. Pawlak, S. E. Gillespie, and J. J. Christensen, J. Solution Chem. 17, 841 (1988).

    Google Scholar 

  25. P. P. S. Saluja, R. J. Lemire, and J. C. LeBlanc, J. Chem. Thermodyn. 24, 181 (1992).

    Google Scholar 

  26. R. C. Phutela, K. S. Pitzer, and P. P. S. Saluja, J. Chem. Eng. Data 32, 76 (1987).

    Google Scholar 

  27. A. D. Pethybridge and S. S. Taba, J. Chem. Soc. Faraday Trans. I 176, 368 (1980).

    Google Scholar 

  28. G. Perron, J. E. Desnoyers, and F. J. Millero, Can. J. Chem. 53, 1134 (1975).

    Google Scholar 

  29. G. Perron, J.-L. Fortier, and J. E. Desnoyers, J. Chem. Thermodyn. 7, 1177 (1975).

    Google Scholar 

  30. R. P. T. Tomkins, E. Andalaft, and G. J. Janz, Trans. Faraday Soc. 65, 1906 (1969).

    Google Scholar 

  31. J. Barthel, L. Iberl, J. Rossmaier, H. J. Gores, and B. Kaukal, J. Solution Chem. 19, 321 (1990).

    Google Scholar 

  32. D. F. Evans, C. Zawoyski, and R. L. Kay, J Phys. Chem. 69, 3878 (1965).

    Google Scholar 

  33. H. Roch, PhD Thesis, Universität Regensburg, Regensburg, Germany, 1991.

  34. L. M. Mukherjee and D. P. Boden, J. Phys. Chem. 73, 3965 (1969).

    Google Scholar 

  35. J.-F. Côté, D. Brouillette, J. E. Desnoyers, J.-F. Rouleau, J.-M. St-Arnaud, and G. Perron, J. Solution Chem. 25, 1163 (1996).

    Google Scholar 

  36. A. E. Mahgoub and A. Lasson, Acta Chem. Scand. A 29, 537 (1975).

    Google Scholar 

  37. R. L. Kay, B. J. Hales, and G. P. Cunningham, J. Phys. Chem. 71, 3925 (1967).

    Google Scholar 

  38. J. K. Senne and B. Kratochvil, Anal. Chem. 43, 79 (1971).

    Google Scholar 

  39. H. L. Yeager and B. Kratochvil, J. Phys. Chem. 74, 963 (1970).

    Google Scholar 

  40. A. C. Harkness and H. M. Daggett, Can. J. Chem. 43, 1215 (1965).

    Google Scholar 

  41. G. Lancelin, B. Dubois, G. Delesalle, and B. Vandrope, J. Chim. Phys. 77, 119 (1980).

    Google Scholar 

  42. M. L. Jansen and H. L. Yeager, J. Phys. Chem. 77, 3089 (1973).

    Google Scholar 

  43. E. M. Hanna and K. Al-Sudani, J. Solution Chem. 16, 155 (1987).

    Google Scholar 

  44. P. K. Muhuri and D. K. Hazra, J. Chem. Soc. Faraday Trans. 87, 3511 (1991).

    Google Scholar 

  45. M. Salomon and E. J. Plichta, Electrochim. Acta 29, 731 (1984).

    Google Scholar 

  46. R. Zana, J. E. Desnoyers, G. Perron, R. L. Kay, and K. Lee, J. Phys. Chem. 86, 3996 (1982).

    Google Scholar 

  47. J.-C. Justice, J. Solution Chem. 20, 1017 (1991).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Côté, JF., Desnoyers, J.E. Application of the Bjerrum Association Model to Electrolyte Solutions. IV. Apparent Molar Heat Capacities and Compressibilities in Water and Aprotic Solvents. Journal of Solution Chemistry 28, 395–412 (1999). https://doi.org/10.1023/A:1022607928669

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022607928669

Navigation