Skip to main content
Log in

Electrocatalytic Oxidation of Nucleic Acids at Electrodes Modified with Nylon and Nitrocellulose Membranes

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Electrocatalytic oxidation of guanine in DNA was detected at tin-doped indium oxide electrodes modified with nylon and nitrocellulose polymers. The catalytic oxidation occurs via oxidation at the electrode of the complex Ru(bpy) 2+3 to the 3+ state, which is then reduced back to the 2+ state by guanine in DNA (bpy = 2,2′-bipyridine). Catalysis is observed as a current enhancement in the cyclic voltammogram of Ru(bpy) 2+3 when DNA is immobilized in the film. As seen in solution, the catalytic enhancement in the nitrocellulose film is lower at 800 mM NaCl than without added salt because electrostatic binding of the Ru(bpy) 2+3 to the DNA at low salt increases the catalytic rate constant. The cyclic voltammogram of Os(bpy) 2+3 , which does not oxidize guanine, exhibits less current in the presence of DNA because binding to the immobilized DNA precludes communication of the metal complex with the electrode. Electrodes modified with poly[C] gave no enhancement; however, catalytic current was observed upon hybridization to poly[G]. Exposure of the poly[C] electrode to random single-stranded DNA gave no catalytic current. Glassy carbon electrodes modified with the membranes behaved in a manner similar to that of the metal oxide electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown (1995) Science 270, 467–470.

    PubMed  Google Scholar 

  2. M. Chee, R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, J. Winkler, D. J. Lockhart, M. S. Morris, and S. P. A. Fodor (1996) Science 274, 610–613.

    Article  PubMed  Google Scholar 

  3. V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri (1997) Science 278, 840–843.

    Article  PubMed  Google Scholar 

  4. K. A. Peterlinz, R. M. Georgiadis, T. M. Herne, and M. J. Tarlov (1997) J. Am. Chem. Soc. 119, 3401–13402.

    Article  Google Scholar 

  5. Y. Okahata, Y. Matsunobu, K. Ijiro, M. Mukae, A. Murakami, and K. Makino (1992) J. Am. Chem. Soc. 114, 8299–8300.

    Google Scholar 

  6. S. R. Mikkelsen (1996) Electroanalysis 8, 15–19.

    Google Scholar 

  7. K. M. Millan and S. R. Mikkelsen (1993) Anal. Chem. 65, 2317–2323.

    PubMed  Google Scholar 

  8. K. M. Millan, A. Saraullo, and S. R. Mikkelsen (1994) Anal. Chem. 66, 2943–2948.

    PubMed  Google Scholar 

  9. K. Hashimoto, K. Ito, and Y. Ishimori (1994) Anal. Chem. 66, 3830–3833.

    PubMed  Google Scholar 

  10. J. Wang, X. Cai, G. Rivas, H. Shiraishi, P. A. M. Farias, and N. Dontha (1996) Anal. Chem. 68, 2629–2634.

    Article  PubMed  Google Scholar 

  11. S. Takenaka, Y. Uto, H. Saita, M. Yokoyama, H. Kondo, and W. D. Wilson (1998) Chem. Commun. 1111–1112.

  12. E. Palecek (1996) Electroanalysis 8, 7–14.

    Google Scholar 

  13. T. deLumley-Woodyear, C. N. Campbell, and A. Heller (1996) J. Am. Chem. Soc. 118, 5504–5505.

    Article  Google Scholar 

  14. E. K. Wilson (1998) Chem. Eng. News 76, 47–49.

    Google Scholar 

  15. D. H. Johnston and H. H. Thorp (1996) J. Phys. Chem. 100, 13837–13843.

    Article  Google Scholar 

  16. D. H. Johnston, T. W. Welch, and H. H. Thorp (1996) Metal Ions Biol. Syst. 33, 297–324.

    Google Scholar 

  17. D. H. Johnston, K. C. Glasgow, and H. H. Thorp (1995) J. Am. Chem. Soc. 117, 8933–8938.

    Google Scholar 

  18. S. Steenken and S. V. Jovanovic (1997) J. Am. Chem. Soc. 119, 617–618.

    Article  Google Scholar 

  19. D. H. Johnston, C.-C. Cheng, K. J. Campbell, and H. H. Thorp (1994) Inorg. Chem. 33, 6388–6390.

    Google Scholar 

  20. M. E. Napier, C. R. Loomis, M. F. Sistare, J. Kim, A. E. Eckhardt, and H. H. Thorp (1997) Bioconjugate Chem. 8, 906–913.

    Article  Google Scholar 

  21. M. E. Napier and H. H. Thorp (1997) Langmuir 13, 6342–6344.

    Article  Google Scholar 

  22. H. H. Thorp (1998) Trends Biotechnol. 16, 117–121.

    Article  Google Scholar 

  23. T. W. Welch and H. H. Thorp (1996) J. Phys. Chem. 100, 13829–13836.

    Article  Google Scholar 

  24. T. W. Welch, A. H. Corbett, and H. H. Thorp (1995) J. Phys. Chem. 99, 11757–11763.

    Google Scholar 

  25. G. S. Manning (1979) Acc. Chem. Res. 12, 443–449.

    Google Scholar 

  26. T. Maniatis, E. F. Fritsch, and J. Sambrook (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  27. J. Zhan, H. D. Fahimi, and A. Voelkl (1997) Biotechniques 22, 500–505.

    PubMed  Google Scholar 

  28. S. Drmanac, D. Kita, I. Labat, B. Hauser, C. Schmidt, J. D. Burczak, and R. Drmanac (1998) Nat. Biotechnol. 16, 54–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napier, M.E., Thorp, H.H. Electrocatalytic Oxidation of Nucleic Acids at Electrodes Modified with Nylon and Nitrocellulose Membranes. Journal of Fluorescence 9, 181–186 (1999). https://doi.org/10.1023/A:1022599432000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022599432000

Navigation