Skip to main content
Log in

Bioenergetics of the Heart at High Altitude: Environmental Hypoxia Imposes Profound Transformations on the Myocardial Process of ATP Synthesis

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The low concentration of O2 in the thin air at high altitude is undoubtedly the reason for the remarkable modifications in the structure and function of the heart, lung, and blood of humans permanently living under these conditions. The effect of natural hypoxia on the energy metabolism of the cell is however not well understood. Here we study the proces of ATP synthesis in the heart of guinea pigs native to high altitude (4500 m) as compared with those native to sea level. The following are the novel findings of this study. (1) The rates and extents of ATP synthesis in the presence of low concentrations of ADP (<30 μM) are significantly higher at high altitude than at sea level. (2) The Hill coefficient, i.e. the degree of cooperativity between the three catalytic sites of the ATP synthase, is lower at high altitude (n = 1.36) than at sea level (n = 1.94). (3) Both, the affinity for ADP and the fractional occupancy of the catalytic sites by ATP, are higher at high altitude than at sea level but the P 50, i.e. the concentration of ADP at which 50% of the catalytic sites are filled with ADP and/or ATP, is the same (∼74.7 μM). (4) In the physiological range of ADP concentrations, the phosphorylation potential ΔG P is significantly higher at high altitude than at sea level. It is concluded that the molecular mechanism of energy transduction is profoundly modified at high altitude in order to readily and efficiently generate ATP in the presence of low concentrations of O2 and ADP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bienfait, H. F., Jacobs, J. M., and Slater, E. C. (1975). Biochim. Biophys. Acta 376, 446–457.

    Google Scholar 

  • Boyer, P. D. (1979). In Membrane Bioenergetics: The Binding-Change Mechanism of ATP Synthesis (Lee, C. P., Schatz, G., and Ernster, L., eds.), Addison-Wesley, Reading, MA. pp. 461–479.

  • Boyer, P. D. (1997). Annu. Rev. Biochem. 66, 717–749.

    Google Scholar 

  • Chance, B., and Williams, G. R. (1955). J. Biol. Chem. 217, 383–393.

    Google Scholar 

  • Cross, R. L., and Duncan, T. M. (1996). J. Bioenerg. Biomemb. 28, 403–408.

    Google Scholar 

  • Cross, R. L., Grubmeyer, C., and Penefsky, H. S. (1982). J. Biol. Chem. 257, 12101–12105.

    Google Scholar 

  • Gnaiger, E. (2001). Respir. Physiol. 128, 277–297.

    Google Scholar 

  • Gnaiger, E., Mendez, G., and Hand, S. C. (2000). Proc. Natl. Acad. Sci. U.S.A. 20, 11080–11085.

    Google Scholar 

  • Hoppeler, H., and Vogt, M. (2001). J. Exp. Biol. 204, 3133–3139.

    Google Scholar 

  • Jeneson, J. A. L., Wiseman, R. W., Westerhoff, H. V., and Kushmerick, M. J. (1996). J. Biol. Chem. 271, 27995–27998.

    Google Scholar 

  • LaNoue, K. F., and Doumen, C. (1995). Adv. Mol. Cell Biol. 11, 207–232.

    Google Scholar 

  • Lemasters, J. J., and Billica, W. H. (1981). J. Biol. Chem. 252, 12949–12957.

    Google Scholar 

  • Lemasters, J. J., Grunwald, R., and Emaus, R. K. (1984). J. Biol. Chem. 259, 3058–3063.

    Google Scholar 

  • Lemasters, J. J., and Hackenbrock, C. R. (1997). In Biomembranes: Continuous Measurements of Adenosine Triphosphate With Fire-fly Luciferase Luminescence (Packer, L., and Feischer, S., eds.), Academic Press, New York, pp. 703–716.

  • Matsuno-Yagi, A., and Hatefi, Y. (1990). J. Biol. Chem. 265, 82–88.

    Google Scholar 

  • Milgrom, Y. M., and Cross, R. L. (1997). J. Biol. Chem. 272, 32211–32214.

    Google Scholar 

  • Perez, J. A., and Ferguron, S. J. (1990). Biochemistry 29, 10518–10526.

    Google Scholar 

  • Reynafarje, D. B. (1962). J. Appl. Physiol. 17, 301–305.

    Google Scholar 

  • Reynafarje, D. B. (1966). In Symposia on Arctic Biology and Medicine: The Physiology of Work in Cold and Altitude (Helfferich, C., ed.), FT. Wainwright, Alaska.

  • Reynafarje, B. D., Costa, L. E., and Lehninger, A. L. (1985). Anal. Biochem. 45, 406–418.

    Google Scholar 

  • Reynafarje, B. D., and Davies, P. W. (1990). Am. J. Physiol. 258 (Cell Physiol. 27), C504–C511.

    Google Scholar 

  • Reynafarje, B. D., and Pedersen, P. L. (1996). J. Biol. Chem. 271, 32546–32550.

    Google Scholar 

  • Slater, E. C., Rosing, J., and Mol, A. (1973). Biochem. Biophys. Acta 292, 534–553.

    Google Scholar 

  • Stryer, L. (1995). In Biochemistry, W. H. Freeman and Co., New York, pp. 157–159.

  • Velasquez, T., and Reynafarje, B. D. (1966). Fed. Proc. 25, 1400–1402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baltazar D. Reynafarje.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynafarje, B.D., Marticorena, E. Bioenergetics of the Heart at High Altitude: Environmental Hypoxia Imposes Profound Transformations on the Myocardial Process of ATP Synthesis. J Bioenerg Biomembr 34, 407–412 (2002). https://doi.org/10.1023/A:1022597523483

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022597523483

Navigation