Skip to main content
Log in

Characterizing the influence of chronic hypobaric hypoxia on diaphragmatic myofilament contractile function and phosphorylation in high-altitude deer mice and low-altitude white-footed mice

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Deer mice, Peromyscusmaniculatus, live at high altitudes where limited O2 represents a challenge to maintaining oxygen delivery to tissues. Previous work has demonstrated that hypoxia acclimation of deer mice and low altitude white-footed mice (P. leucopus) increases the force generating capacity of the diaphragm. The mechanism behind this improved contractile function is not known. Within myocytes, the myofilament plays a critical role in setting the rate and level of force production, and its ability to generate force can change in response to changes in physiological conditions. In the current study, we examined how chronic hypobaric hypoxia exposure of deer mice and white-footed mice influences the Ca2+ activation of force generation by skinned diaphragmatic myofilaments, and the phosphorylation of myofilament proteins. Results demonstrate that myofilament force production, and the Ca2+ sensitivity of force generation, were not impacted by acclimation to hypobaric hypoxia, and did not differ between preparations from the two species. The cooperativity of the force-pCa relationship, and the maximal rate of force generation were also the same in the preparations from both species, and not impacted by acclimation. Finally, the relative phosphorylation of TnT, and MLC was lower in deer mice than white-footed mice, but was not affected by acclimation. These results indicate that species differences in diaphragm function, and the increase in force production with hypoxia acclimation, are not due to differences, or changes, in myofilament function. However, it appears that diaphragmatic myofilament function in these species is not affected by chronic hypobaric hypoxia exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bedford NL, Hoekstra HE (2015) Peromyscus mice as a model for studying natural variation. Elife 4:e06813

    Article  PubMed Central  Google Scholar 

  • Bigard A-XX, Brunet A, Serrurier B, Guezennec C-YY, Monod H (1992) Effects of endurance training at high altitude on diaphragm muscle properties. Pflugers Arch Eur J Physiol 422:239–244

    Article  CAS  Google Scholar 

  • Block BA (1994) Thermogenesis in muscle. Annu Rev Physiol 56:535–577

    Article  CAS  PubMed  Google Scholar 

  • Block BA, O’Brien J, Meissner G (1994) Characterization of the sarcoplasmic reticulum proteins in the thermogenic muscles of fish. J Cell Biol 127:1275–1287

    Article  CAS  PubMed  Google Scholar 

  • Cheviron ZA, Bachman GC, Connaty AD, McClelland GB, Storz JF (2012) Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. Proc Natl Acad Sci USA 109:8635–8640

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheviron ZA, Bachman GC, Storz JF (2013) Contributions of phenotypic plasticity to differences in thermogenic performance between highland and lowland deer mice. J Exp Biol 216:1160–1166

    Article  PubMed  PubMed Central  Google Scholar 

  • Colson BA, Bekyarova T, Locher MR, Fitzsimons DP, Irving TC, Moss RL (2008) Protein kinase a-mediated phosphorylation of cmybp-c increases proximity of myosin heads to actin in resting myocardium. Circ Res 103:244–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conley KE, Porter WP (1986) Heat loss from deer mice (peromyscus): evaluation of seasonal limits to thermoregulation. J Exp Biol 126:249–269

    CAS  PubMed  Google Scholar 

  • Dawson NJ, Lyons SA, Henry DA, Scott GR (2018) Effects of chronic hypoxia on diaphragm function in deer mice native to high altitude. Acta Physiol 223:e13030

    Article  CAS  Google Scholar 

  • Degens H, Bosutti A, Gilliver SF, Slevin M, Van Heijst A, Wüst RCI (2010) Changes in contractile properties of skinned single rat soleus and diaphragm fibres after chronic hypoxia. Pflugers Arch Eur J Physiol 460:863–873

    Article  CAS  Google Scholar 

  • Dong W-J, James Jayasundar J, An J, Xing J, Cheung HC (2007) Effects of PKA phosphorylation of cardiac troponin i and strong crossbridge on conformational transitions of the N-domain of cardiac troponin C in regulated thin filaments. Biochemistry 46:9752–9761

    Article  CAS  PubMed  Google Scholar 

  • El-Khoury R, O’Halloran KD, Bradford A (2003) Effects of chronic hypobaric hypoxia on contractile properties of rat sternohyoid and diaphragm muscles. Clin Exp Pharmacol Physiol 30:551–554

    Article  CAS  PubMed  Google Scholar 

  • Feldhamer GA, Gates JE, Howard JH (1983) Field identification of Peromyscus maniculatus and P. leucopus in Maryland: Reliability of morphological characteristics. Acta Physiol 28:417–423

    Google Scholar 

  • Fogarty MJ, Mantilla CB, Sieck GC (2018) Breathing: motor control of diaphragm muscle. Physiology 33:113–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster AJ, Platt MJ, Huber JS, Eadie AL, Arkell AM, Romanova N, Wright DC, Gillis TE, Murrant CL, Brunt KR, Simpson JA (2017) Neurohormonal stimuli increases neural ventilatory drive triggering diaphragm atrophy and weakness in heart failure. Sci Transl Med 9:1303

    Article  Google Scholar 

  • Frederiksen DW (1980) Myosin phosphorylation. Nature 287:191–192

    Article  CAS  PubMed  Google Scholar 

  • Gamboa JL, Andrade FH (2012) Muscle endurance and mitochondrial function after chronic normobaric hypoxia: contrast of respiratory and limb muscles. Pflugers Arch Eur J Physiol 463:327–338

    Article  CAS  Google Scholar 

  • Gayan-Ramirez G, Decramer M (2002) Effects of mechanical ventilation on diaphragm function and biology. Eur Respir J 20:1579–1586

    Article  CAS  PubMed  Google Scholar 

  • Gehlert S, Bloch W, Suhr F (2015) Ca2+-dependent regulations and signaling in skeletal muscle: from electro-mechanical coupling to adaptation. Int J Mol Sci 16:1066–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger PC, Cody MJ, Siek GC (1999) Force-calcium relationship depends on myosin heavy chain and troponin isoforms in rat diaphragm muscle fibers. J Appl Physiol 87:1894–1900

    Article  CAS  PubMed  Google Scholar 

  • Geiger PC, Cody MJ, Macken RL, Siek GC (2000) Maximum specific force depends on myosin heavy chain content in rat diaphragm muscle fibers. J Appl Physiol 89:695–703

    Article  CAS  PubMed  Google Scholar 

  • Geiger PC, Cody MJ, Macken RL, Bayrd ME, Siek GC (2001) Effect of unilateral denervation on maximum specific force in rat diaphragm muscle fibers. J Appl Physiol 90:1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Geiger PC, Cody MJ, Macken RL, Bayrd ME, Siek GC (2001) Mechanisms underlying increased force generation by rat diaphragm muscle fibers during development. J Appl Physiol 90:380–388

    Article  CAS  PubMed  Google Scholar 

  • Gillis TE (2011) Evolution of the regulatory control of the vertebrate heart: The role of the contracitle proteins. Encycl Fish Physiol 2:1054–1059

    Article  Google Scholar 

  • Gillis TE, Klaiman JM (2011) The influence of PKA treatment on the Ca2+ activation of force generation by trout cardiac muscle. J Exp Biol 214:1989–1996

    Article  CAS  PubMed  Google Scholar 

  • Gillis TE, Liang B, Chung F, Tibbits GF (2005) Increasing mammalian cardiomyocyte contractility with residues identified in trout troponin C. Physiol Genom 22:1–7

    Article  CAS  Google Scholar 

  • Gillis TE, Martyn DA, Rivera AJ, Regnier M (2007) Investigation of thin filament near-neighbour regulatory unit interactions during force development in skinned cardiac and skeletal muscle. J Physiol Online 580:561–576

    Article  CAS  Google Scholar 

  • Gillis TE, Klaiman JM, Foster A, Platt MJ, Huber JS, Corso MY, Simpson JA (2016) Dissecting the role of the myofilament in diaphragm dysfunction during the development of heart failure in mice. Am J Physiol Hear Circ Physiol 310:H572–H586

    Article  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    Article  CAS  PubMed  Google Scholar 

  • Goubel F, Marini JF (1987) Fibre type transition and stiffness modification of soleus muscle of trained rats. Pflügers Arch Eur J Physiol 410:321–325

    Article  CAS  Google Scholar 

  • Hammond KA, Roth J, Janes DN, Dohm MR (1999) Morphological and physiological responses to altitude in deer mice Peromyscus maniculatus. Physiol Biochem Zool Ecol Evol Approaches 72:613–622

    Article  CAS  Google Scholar 

  • Hayes JP (1989) Field and maximal metabolic rates of deer mice ( Peromyscus maniculatus ) at low and high. Physiol Zool 62:732–744

    Article  Google Scholar 

  • Hock RJ (1964) Physiological responses of deer mice to various native altitudes. In: Weihe WH (ed) The physiological effects of high altitude. Macmillan, New York, pp 59–72

    Chapter  Google Scholar 

  • Hodgson M, Docherty D, Robbins D (2005) Post-activation potentiation. Sport Med 35(585):595

    Google Scholar 

  • Humphries MM, Boutin S, Thomas DW, Ryan JD, Selman C, McAdam AG, Berteaux D, Speakman JR (2005) Expenditure freeze: the metabolic response of small mammals to cold environments. Ecol Lett 8:1326–1333

    Article  Google Scholar 

  • Ivy CM, Scott GR (2015) Control of breathing and the circulation in high-altitude mammals and birds. Comp Biochem Physiol Part A 186:66–74

    Article  CAS  Google Scholar 

  • Ivy CM, Scott GR (2017) Ventilatory acclimatization to hypoxia in mice: methodological considerations. Respir Physiol Neurobiol 235:95–103

    Article  PubMed  Google Scholar 

  • Ivy CM, Scott GR (2017) Control of breathing and ventilatory acclimatization to hypoxia in deer mice native to high altitudes. Acta Physiol 221:266–282

    Article  CAS  Google Scholar 

  • Ivy CM, Scott GR (2018) Evolved changes in breathing and CO2 sensitivity in deer mice natives to high altitudes. Am J Physiol Integr Comp Physiol 315:R1027–R1037

    Article  CAS  Google Scholar 

  • Jammes Y, Zattara-Harmann MC, Badier M (1997) Functional consequenses of acute and chronic hypoxia on respiratory and skeletal muscles in mammals. Comp Biochem Physiol A 118:15–22

    Article  CAS  Google Scholar 

  • Janssen PML, Periasamy M (2007) Determinants of frequency-dependent contraction and relaxation of mammalian myocardium. J Mol Cell Cardiol 43:523–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Layland J, Solaro RJ, Shah AM (2005) Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res 66:12–21

    Article  CAS  PubMed  Google Scholar 

  • Leith DE, Bradley M (1976) Ventilatory muscle strength and endurance training. J Appl Physiol 41:508–516

    Article  CAS  PubMed  Google Scholar 

  • Lewis P, O’Halloran KD (2016) Diaphragm muscle adaptation to sustained hypoxia: lessons from animal models with relevance to high altitude and chronic respiratory diseases. Front Physiol 7:1–11

    Google Scholar 

  • Lewis P, Sheehan D, Soares R, Coelho AV, O’Halloran KD (2016) Redox remodeling is pivotal in murine diaphragm muscle adaptation to chronic sustained hypoxia. Am J Respir Cell Mol Biol 55:12–23

    Article  CAS  PubMed  Google Scholar 

  • Lieberman DA, Maxwell LC (1972) Adaptation of guinea pig diaphragm muscle to aging and endurance training. Am J Physiol 222:556–560

    Article  CAS  PubMed  Google Scholar 

  • Long CA (1996) Ecological replacement of the deer mouse, Peromyscus maniculatus, by the white-footed mouse, P. leucopus, in the Great Lakes region. Can Field-Nat 110:271–277

    Google Scholar 

  • Lui MA, Mahalingam S, Patel P, Connaty AD, Ivy CM, Cheviron ZA, Storz JF, McClelland GB, Scott GR (2015) High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice. Am J Physiol Integr Comp Physiol 308:R779–R791

    Article  CAS  Google Scholar 

  • Mahalingam S, McClelland GB, Scott GR, Mahalingam S (2017) Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice. J Physiol 595:14

    Article  CAS  Google Scholar 

  • Mantilla CB, Seven YB, Zhan W-Z, Sieck GC (2010) Diaphragm motor unit recruitment in rats. Respir Physiol Neurobiol 173:101–106

    Article  PubMed  PubMed Central  Google Scholar 

  • McClelland GB, Scott GR (2019) Evolved mechanisms of aerobic performance and hypoxia resistance in high-altitude natives. Annu Rev Physiol (In press)

  • McClelland GB, Hochachka PW, Weber J-M (1998) Carbohydrate utilization during exercise after high-altitude acclimation: A new perspective. Physiology 95:10288–10293

    CAS  Google Scholar 

  • McMorrow C, Fredsted A, Carberry J, O’Connell RA, Bradford A, Jones JFX, O’Halloran KD (2011) Chronic hypoxia increases rat diaphragm muscle endurance and sodium-potassium ATPase pump content. Eur Respir J 37:1474–1481

    Article  CAS  PubMed  Google Scholar 

  • Messer AE, Jacques AM, Marston SB (2007) Troponin phosphorylation and regulatory function in human heart muscle: dephosphorylation of Ser23/24 on troponin I could account for the contractile defect in end-stage heart failure. J Mol Cell Cardiol 42:247–259

    Article  CAS  PubMed  Google Scholar 

  • Natarajan C, Hoffmann FG, Lanier HC, Wolf CJ, Cheviron ZA, Spangler ML, Weber RE, Fago A, Storz JF (2015) Intraspecific polymorphism, interspecific divergence, and the origins of function-altering mutations in deer mouse hemoglobin. Mol Biol Evol 32:978–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noland TA, Kuo JF (1993) Protein kinase C phosphorylation of cardiac troponin I and troponin T inhibits Ca2+-stimulated MgATPase activity in reconstituted actomyosin and isolated myofibrils, and decreases actin-myosin interactions. J Mol Cell Cardiol 25:53–65

    Article  CAS  PubMed  Google Scholar 

  • Polla B, D’Antona G, Bottinelli R, Reggiani C (2004) Respiratory muscle fibres: specialisation and plasticity. Thorax 59:808–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers SK, Criswell D, Lieu FK, Dodd S, Silverman H (1992) Diaphragmatic fiber type specific adaptation to endurance exercise. Respir Physiol 89:195–207

    Article  CAS  PubMed  Google Scholar 

  • Raguso CA, Guinot SL, Janssens JP, Kayser B, Pichard C (2004) Chronic hypoxia: common traits between chronic obstructive pulmonary disease and altitude. Curr Opin Clin Nutr Metab Care 7:411–417

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro PAB, Ribeiro JP, Minozzo FC, Pavlov I, Leu NA, Kurosaka S, Kashina A, Rassier DE (2013) Contractility of myofibrils from the heart and diaphragm muscles measured with atomic force cantilevers: effects of heart-specific deletion of arginyl-tRNA-protein transferase. Int J Cardiol 168:3564–3571

    Article  PubMed  Google Scholar 

  • Salhi HE, Walton SD, Hassel NC, Brundage EA, De Tombe PP, Janssen PML, Davis JP, Biesiadecki BJ (2014) Cardiac troponin I tyrosine 26 phosphorylation decreases myofilament Ca2+ sensitivity and accelerates deactivation. J Mol Cell Cardio, pp 257–264.

  • Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscle. Physiol Rev 91:1447–1531

    Article  CAS  PubMed  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Keynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saafeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Scott GR, Elogio TS, Lui MA, Storz JF, Cheviron ZA (2015) Adaptive modifications of muscle phenotype in high-altitude deer mice are associated with evolved changes in gene regulation. Mol Biol Evol 32:1962–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiota S, Okada T, Naitoh H, Ochi R, Fukuchi Y (2004) Hypoxia and hypercapnia affect contractile and histological properties of rat diaphragm and hind limb muscles. Pathophysiology 11:23–30

    Article  CAS  PubMed  Google Scholar 

  • Sieck GC, Fournier M (1989) Diaphragm motor unit recruitment during ventilatory and nonventilatory behaviours. J Appl Physiol 66:2539–2545

    Article  CAS  PubMed  Google Scholar 

  • Snyder LRG (1985) Low Pso in deer mice native to high altitude. J Appl Physiol 58:193–199

    Article  CAS  PubMed  Google Scholar 

  • Storz JF, Runck AM, Sabatino SJ, Kelly JK, Ferrand N, Moriyama H, Weber RE, Fago A (2009) Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin. Proc Natl Acad Sci USA 106:14450–14455

    Article  PubMed  PubMed Central  Google Scholar 

  • Sweeney HL, Stull JT (1990) Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: implications for regulation of actin-myosin interaction. Proc Natl Acad Sci USA 87:414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney HL, Bowman BF, Stull JT (1993) Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol 264:C1085–C1095

    Article  CAS  PubMed  Google Scholar 

  • Tate KB, Ivy CM, Velotta JP, Storz JF, McClelland GB, Cheviron ZA, Scott GR (2017) Circulatory mechanisms underlying adaptive increases in thermogenic capacity in high-altitude deer mice. J Exp Biol 220:3616–3620

    Article  PubMed  PubMed Central  Google Scholar 

  • Teppema LJ, Dahan A (2010) The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev 90:675–754

    Article  CAS  PubMed  Google Scholar 

  • Thayer R, Collins J, Noble EG, Taylor AW (2000) A decade of aerobic endurance training: histological evidence for fibre type transformation. J Sports Med Phys Fitness 40:284–289

    CAS  PubMed  Google Scholar 

  • Velotta JP, Ivy CM, Wolf CJ, Scott GR, Cheviron ZA (2018) Maladaptive phenotypic plasticity in cardiac muscle growth is supressed in high-altitude deer mice. Evolution 72:2712–2727

    Article  PubMed  Google Scholar 

  • Wolff JO (1985) Comparative population ecology of Peromyscus leucopus and Peromyscus maniculatus. Can J Zool 63:1548–1555

    Article  Google Scholar 

  • Wolff JO, Dueser RD, Berry KS (1985) Food habits of sympatric Peromyscus leucopus and Peromyscus maniculatus. J Mammal 66:795–798

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Nicole Pranckevicius for assisting with sample collections.

Funding

YD was supported by an Undergraduate Student Research Award from the Natural Sciences and Engineering Research Council (NSERC) of Canada. GRS is supported by an NSERC Discovery Grant and the Canada Research Chairs Program. TEG is supported by an NSERC Discovery Grant and an NSERC Discovery Accelerator Supplement. Equipment used in this study was purchased with funds from the Canadian Foundation for Innovation, and the Ontario Ministry of Research and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd E. Gillis.

Additional information

Communicated by H.V. Carey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Lyons, S.A., Scott, G.R. et al. Characterizing the influence of chronic hypobaric hypoxia on diaphragmatic myofilament contractile function and phosphorylation in high-altitude deer mice and low-altitude white-footed mice. J Comp Physiol B 189, 489–499 (2019). https://doi.org/10.1007/s00360-019-01224-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-019-01224-w

Keywords

Navigation