Skip to main content
Log in

Comparison Between Air Filamentary and Helium Glow Dielectric Barrier Discharges for the Polypropylene Surface Treatment

  • Published:
Plasmas and Polymers

Abstract

Recently, a glow like dielectric controlled barrier discharge (GDBD) working at atmospheric pressure has been observed. Such a discharge could replace a filamentary dielectric controlled barrier discharge (FDBD) used in corona treatment systems to improve the wettability or the adhesion of polymers. So it is of interest to compare these two types of discharges and their respective effect on a polymer surface. This is the aim of an extensive study we have undertaken. The first step presented here is the comparison of a filamentary discharge in air with a glow discharge in helium. Helium is the most appropriate gas to realize a glow discharge at atmospheric pressure. Air is the usual atmosphere for a corona treatment. The plasma was characterized by emission spectroscopy and current measurements. The surface transformations were indicated by the water contact angle, the leakage current measurement and the X-ray photoelectron spectroscopy. Results show that the helium GDBD is better than air FDBD to increase polypropylene wettability without decreasing the bulk electrical properties below a certain level. Contact angle scattering as well as leakage current measurements confirm that the GDBD clearly results in more reproducible and homogeneous treatment than the FDBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Messaoudi, A. Younsi, F. Massines, B. Despax, and C. Mayoux, IEEE Trans. Dielectric Elect. Insul. 3,4, 537 (1996).

    Google Scholar 

  2. J. Salge, J. Phys. IV 5, C5-583 (1995).

    Google Scholar 

  3. A. Von Engel, A. Seeliger, and M. Steenbeck, Z. Phys. 85, 144 (1933).

    Google Scholar 

  4. R. Bartnikas, IEEE Trans. Elect. Insul. EI-6,2, 63 (1971).

    Google Scholar 

  5. M. Stradal and D. A. I. Goring, Can. J. Chem. Eng. 53, 427 (1975).

    Google Scholar 

  6. S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D: Appl. Phys. 21, 838 (1988).

    Google Scholar 

  7. S. Okazaki, M. Kogoma, and H. Uchiyama, Proc. Third Int. Symp. on High Pressure Low Temp. Plasma Chem. (HAKONE III), Strasbourg, France, September 101 (1991) 3-5.

  8. Y. Sawada, S. Ogawa, and M. Kogoma, J. Phys. D: Appl. Phys. 28, 1661 (1995).

    Google Scholar 

  9. F. Massines, R. Ben Gadri, Ph. Decomps, A. Rabehi, P. Ségur, and Ch. Mayoux, in Penomena in ionized gazes, K. E. Becker, (ed.), American Institute of Physics Conference Proceeding 363, (1996) p. 306.

  10. B. Eliasson and U. Kogelschatz, IEEE Trans. Plasma Sci. 19,2, 309 (1991).

    Google Scholar 

  11. M. Kogoma and S. Okazaki, J. Phys. D: Appl. Phys. 27, 1985 (1994).

    Google Scholar 

  12. C. Liu, P. P. Tsai, and J. R. Roth, Proc. 20th IEEE Int. Conf. Plasma Sci., Vancouver, Canada, June 7–9, (1993).

  13. J. Lopez, B. Despax, and C. Mayoux, Tenth Conf. Elect. Insul. Dielectric Phenomena (CEIDP 10), Proceeding IEEE 87CH2462-0, Gaithesburg, October, (1987) p. 251.

  14. A. A. Radzig and B. M. Smirnov, in Reference Data on Atoms, Molecules and Ions, Springer series in Chemical Physics, (1985) p. 31.

  15. A. Ricard and J. Lefebvre, Analusis 6, 7, 299 (1978).

    Google Scholar 

  16. F. Massines, T. Lebey, and C. Mayoux, Fourth Int. Conf. on Conduction and Breakdown in Solid Dielectrics (ICSD 4), Proceeding IEEE 92CH3034-6, Sestri, June 22–25, (1992) p. 518.

  17. J. Sarlaboux and C. Mayoux, IEEE Symp. Elect. Insul., Montréal, June 11–13, (1984) p. 121.

  18. J. Sarlaboux and C. Mayoux, J. Phys. D: Appl. Phys. 22, 13 (1979).

    Google Scholar 

  19. T. Yokoyama, M. Kogoma, S. Kanazawa, T. Moriwaki, and S. Okazaki, J. Phys D: Appl. Phys. 23, 374 (1990).

    Google Scholar 

  20. E. Occhiello, M. Morra, G. Morini, F. Garbassi, and P. Humphrey, J. Appl. Polym. Sci. 42, 551 (1991).

    Google Scholar 

  21. I. Sutherland, R. P. Popat, D. M. Brewis, and R. Calder, J. Adhesion 46, 78 (1994).

    Google Scholar 

  22. B. Eliason, M. Hirth, and U. Kogelschartz, J. Phys. D: Appl. Phys. 20, 1421 (1987).

    Google Scholar 

  23. E. Landers, Proc. IEEE 125, 1069 (1978).

    Google Scholar 

  24. M. J. Walzak, S. Flynn, R. Foerch, J. M. Hill, E. Karbasheski, A Lin, and M. Strobel, J. Adhesion Sci. Tech. 9,9, 1229 (1995).

    Google Scholar 

  25. J. Stevefelt, J. M. Pouvesle, and A. Bouchoule, J. Chem. Phys. 76,8, 4006 (1982).

    Google Scholar 

  26. M. Tatoulian, F. Arefi-Khonsari, I. Mabille-Rouger, J. Amouroux, M. Gheorgiu, and D. Bouchier, J. Adhesion Sci. Tech. 9,7, 923 (1995).

    Google Scholar 

  27. S. Nowak and O. M. Küttel, Mater. Sci. Forum 140–142, 705 (1993).

    Google Scholar 

  28. J. M. Lane and D. J. Hourston, Progress in Organic Coating 21, 269 (1993).

    Google Scholar 

  29. S. Saphieha, J. Cerny, J. E. Klemberg-Saphieha, and L. Martinu, J. Adhesion 42, 91 (1993).

    Google Scholar 

  30. E. Marode, F. Bastien, and M. Bakker, 1979 J. Appl. Phys. 50,1, 140-146 (1979).

    Google Scholar 

  31. C. Mayoux, IEEE Trans. Elect. Ins. E1-11,4, 139 (1986).

    Google Scholar 

  32. M. Goldman, A. Goldman, and J. Gatelet, Int. Conf. Partial Discharge, Canterbury (UK), September 28–30, (1993) p. 11.

  33. C. Mayoux, IEEE Trans. Dielectric Elect. Insul. 1,5, 785 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massines, F., Messaoudi, R. & Mayoux, C. Comparison Between Air Filamentary and Helium Glow Dielectric Barrier Discharges for the Polypropylene Surface Treatment. Plasmas and Polymers 3, 43–59 (1998). https://doi.org/10.1023/A:1022582017499

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022582017499

Navigation