Skip to main content
Log in

Surface Treatment of Polyimide Substrates Using Dielectric Barrier Discharge Reactors Based on L-Shaped Electrodes

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Two dielectric barrier discharge reactors, based on L-shaped electrodes, were designed and fabricated for in-line surface treatment of polyimide (PI) substrates. Under homogeneous discharge mode, their surface treatment performance was evaluated in terms of water contact angles (WCAs) of PI film. Hydrophilicity of polymer films arises from the grafting of functional groups onto the polymer’s surface by O and N radicals. In our reactor, ambient air could be entrained into the discharge region, such that the WCA of PI film was effectively lowered without adding O2 or N2 gas. The PI film WCA decreased with increased applied voltage or with decreased motion speed of the substrate. A serial connection of the electrode lowered the WCA, whereas O2 addition only weakly affected the PI film hydrophilicity. The mechanisms underlying these phenomena were analyzed using the discharge current, the temporal and time-averaged discharge images, and the optical emission profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pappas D (2011) J Vac Sci Technol A 29:020801

    Article  Google Scholar 

  2. Tsougeni K, Vourdas N, Tserepi A, Gogolides E (2009) Langmuir 25:11748

    Article  CAS  Google Scholar 

  3. Couranjou MM, Choquet P, Guillot J, Migeon HN (2009) Plasma Process Polym 6:S397

    Article  Google Scholar 

  4. Lin Y-S, Liu H-M (2008) Thin Solid Films 516:1773

    Article  CAS  Google Scholar 

  5. Wang C, Chen JR, Li R (2008) Appl Surf Sci 254:2882

    Article  CAS  Google Scholar 

  6. Lommatzsch U, Pasedag D, Baalmann A, Ellinghorst G, Wagner H-E (2007) Plasma Process Polym 4:S1041

    Article  Google Scholar 

  7. Friedrich JF, Mix R, Kühn G (2005) Surf Coat Technol 200:565

    Article  CAS  Google Scholar 

  8. Noeske M, Degenhardt J, Strudthoff S, Lommatzsch U (2004) Int J Adhes Adhes 24:171

    Article  CAS  Google Scholar 

  9. Wagner H-E, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF (2003) Vacuum 71:417

    Article  CAS  Google Scholar 

  10. Fang Z, Qiu Y, Luo Y (2003) J Phys D Appl Phys 36:2980

    Article  CAS  Google Scholar 

  11. Shenton MJ, Hoare MCL, Stevens GC (2001) J Phys D Appl Phys 34:2754

    Article  CAS  Google Scholar 

  12. Massines F, Gouda G, Gherardi N, Duran M, Croquesel E (2001) Plasmas Polym 6:35

    Article  CAS  Google Scholar 

  13. Park JB, Oh JS, Gil EL, Kyoung SJ, Lim JT, Yeom GY (2010) J Electrochem Soc 157:D614

    Article  CAS  Google Scholar 

  14. Bonandini L, Barbero N, Costabello K, Pavan C, Parisi F, Viscardi G (2010) ChemSusChem 3:591

    Article  CAS  Google Scholar 

  15. Gonzalez E II, Barankin MD, Guschl PC, Hicks RF (2008) Langmuir 24:12636

    Article  CAS  Google Scholar 

  16. Walsh JL, Kong MG (2007) Appl Phys Lett 91:251504

    Article  Google Scholar 

  17. Kääriäinen TO, Cameron DC, Tanttari M (2009) Plasma Process Polym 6:631

    Article  Google Scholar 

  18. Brandenburg R, Maiorov VA, Golubovskii YuB, Wagner H-E, Behnke J, Behnke JF (2005) J Phys D Appl Phys 38:2187

    Article  CAS  Google Scholar 

  19. Kozlov KV, Brandenburg R, Wagner H-E, Morozov AM, Michel P (2005) J Phys D Appl Phys 38:518

    Article  CAS  Google Scholar 

  20. Massines F, Rabehi A, Decomps P, Gadri RB, Ségur P, Mayoux C (1998) J Appl Phys 83:2950

    Article  CAS  Google Scholar 

  21. Massines F, Gherardi N, Naudé N, Ségur P (2009) Eur Phys J Appl Phys 47:22805

    Article  Google Scholar 

  22. Hur M, Kang WS, Song YH (2013) Plasma Chem Plasma Process 33:115

    Article  CAS  Google Scholar 

  23. Hur M, Kang WS, Song YH (2013) EPL 102:55001

    Article  Google Scholar 

  24. Hur M, Kang WS, Song YH, Kim DJ, Yu SS (2013) Plasma Process Polym 10:1090

    Article  CAS  Google Scholar 

  25. Kang WS, Hur M, Lee JO, Song YH (2014) Appl Surf Sci 295:198

    Article  CAS  Google Scholar 

  26. Mangolini L, Orlov K, Kortshagen U, Heberlein J, Kogelschatz U (2002) Appl Phys Lett 80:1722

    Article  CAS  Google Scholar 

  27. Anderson C, Hur M, Zhang P, Mangolini L, Kortshagen U (2004) J Appl Phys 96:1835

    Article  CAS  Google Scholar 

  28. Inagaki N, Narushim K, Tuchida N, Miyazaki K (2004) J Polym Sci B 42:3727

    Article  CAS  Google Scholar 

  29. Griem HR (1964) Plasma spectroscopy. McGraw Hill, New York

    Google Scholar 

  30. Fauchais P, Coudert JF, Vardelle M (1989) In: Auciello O, Flamm DL (eds) Plasma diagnostics. Academic Press, Boston

    Google Scholar 

  31. Park G, Lee H, Kim G, Lee JK (2008) Plasma Process Polym 5:569

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Development Program of Manufacturing Technology for Flexible Electronics with High Performance funded by Korea Institute of Machinery and Materials (KIMM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hur, M., Kang, W.S., Lee, J.O. et al. Surface Treatment of Polyimide Substrates Using Dielectric Barrier Discharge Reactors Based on L-Shaped Electrodes. Plasma Chem Plasma Process 35, 231–246 (2015). https://doi.org/10.1007/s11090-014-9598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9598-1

Keywords

Navigation