Skip to main content
Log in

Cytokinin metabolism in Physcomitrella patens – differences and similarities to higher plants

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Cytokinins play an important role in plant development and occur informs with different hormonal activity. As the nucleotide forms of cytokininsare considered to have little or no biological activity, the conversion ofcytokinin bases and ribosides to their nucleotides can contribute to the tuningof cytokinin activity in plant cells. Cytokinin metabolism was monitoredin vivo by feeding either radiolabelledisopentenyladenosine (3H-[9R]iP) or isopentenyladenine(3H-iP) to liquid grown chloronema tissue ofPhyscomitrellapatens (Hedw.) B.S.G. wild type. The riboside 3H-[9R]iPwas rapidly converted to 3H-iP, which was released into the culturemedium. The intracellular concentration of the 3H-iP was twice ashigh as extracellular. From the overall amount of 3H-iP about 95%were present in the medium. Cytokinin nucleotides occurred as tritiated mono-,di- and triphosphates of 3H-[9R]iP. When feeding the base3H-iP however, its main metabolic fate was degradation and nosignificant amounts of radiolabelled cytokinin nucleotides were detected. Forthe cytokinin metabolism in P. patens it is concludedthat,in contrast to higher plants nucleotides are mainly formed from ribosidesvia the adenosine kinase pathway and not byribophosphorylation of the cytokinin base via adeninephosphoribosyltransferase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashton N.W. and Cove D.J. 1977. The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Molec. Gen. Genet. 154: 87-95.

    Google Scholar 

  • Ashton N.W., Cove D.J. and Featherstone D.R. 1979. The isolation and physiological analysis of mutants of the moss Physcomitrellapatens, which overproduce gametophores. Planta 144: 437-442.

    Google Scholar 

  • Bauer L. 1966. Isolierung und Testung einer kinetinartigen Substanzaus Kalluszellen von Laubmoossporophyten. Z. Pflanzenphysiol 54: 241.

    Google Scholar 

  • Bieleski R.L. 1964. The problem of halting enzyme action when extracting plant tissues. Anal. Biochem. 9: 431-442.

    Google Scholar 

  • Bopp M. and Brandes H. 1964. Versuche zur Analyse der Protonemaentwicklungder Laubmoose. II. Planta 62: 116-136.

    Google Scholar 

  • Burch L.R. and Stuchbury T. 1987. Activity and distribution of enzymes that interconvert purine bases, ribosides and ribotides in the tomato plant and possible implications for cytokinin metabolism. Physiol. Plantarum 69: 283-288.

    Google Scholar 

  • Chen C.-M. 1981. Biosynthesis and enzymic regulation of the interconversion of cytokinin. In: Guern J. and Peaud-Lenoel C.(eds), Metabolism and Molecular Activities of Cytokinins. Springer-Verlag, Berlin, pp. 34-43.

    Google Scholar 

  • Chen C.-M. 1997. Cytokinin biosynthesis and interconversion. Physiologia Plantarum 101: 665-673.

    Google Scholar 

  • Chen C.-M. and Eckert R.L. 1977. Phosphorylation of cytokinin by adenosine kinase from wheat germ. Plant Physiol 59: 443-447.

    Google Scholar 

  • Chen C.-M. and Kristopeit S.M. 1981. Metabolism of cytokinin: Deribolisation of cytokinin ribonucleoside by adenosine nucleosidase from wheat germ cells. Plant Physiol 68: 1020-1023.

    Google Scholar 

  • Chen C.-M., Melitz D.K. and Clough F.W. 1982. Metabolism of cyokinin: phosphoribosylation of cytokinin bases by adeninephosphoribosyltransferase from wheat germ. Archives of Biochemistry and Biophysics 214: 634-641.

    Google Scholar 

  • Cove D. 2000. The moss, Physcomitrella patens. J Plant Growth Regul. 19: 275-283.

    Google Scholar 

  • Galuszka P., Frebort I., Sebela M. and Pec P. 2000. Degradation of cytokinins by cytokinin oxidases in plants. Plant Growth Regulation 32: 315-327.

    Google Scholar 

  • Houba-Hérin N., Pethe C., d'Alayer J. and Laloue M. 1999. Cytokininoxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. The Plant Journal 17: 615-626.

    Google Scholar 

  • Jameson P.E. 1994. Cytokinin metabolism and compartmentation. In: Mok D.W.S. and Mok M.C. (eds), Cytokinins: Chemistry, Activity, and Function. CRC Press, Boca Raton, pp. 113-128.

    Google Scholar 

  • Jensen K.F. and Nygaard P. 1975. Purin nucleoside phosphorylase from Escherichia coliand Salmonella typhium- purification and some properties. Eur. J. Biochem. 51: 253-265.

    Google Scholar 

  • Kakimoto T. 2001. Identification of plant cytokinin biosynthetic enzymes as dimethyl diphosphate:ATP/ADP isopentenyltransferases. Plant and Cell Physiology 42: 677-685.

    Google Scholar 

  • Kaminek M., Motyka V. and Vankova R. 1997. Regulation of cytokinincontent in plant cells. Physiologia Plantarum 101: 689–700.

    Google Scholar 

  • Laloue M., Terrine C. and Guern J. 1977. Cytokinins: metabolism and biological activity of N6-(D2-isopentenyl)adenosine andN6-(D2-isopentenyl) adenine in tobacco cells and callus. Plant Physiol. 59: 478-483.

    Google Scholar 

  • Laloue M., Pethe-Terrine C. and Guern J. 1981. Uptake and metabolism of cytokinins in tobacco cells: Studies in relation to the expression of their biological activities. In: Guern J. and Peaud-Leonel C. (eds), Metabolism and Molecular Activities of Cytokinins. Springer Verlag, Berlin, pp. 80-96.

    Google Scholar 

  • Laloue M. and Pethe C. 1982. Dynamics of cytokinin metabolism in tobacco cells. In: Wareing P.F. (ed.), Plant Growth Substances. Academic Press, London, pp. 185-195.

    Google Scholar 

  • Laloue M. and Fox J.E. 1987. The synthesis of tritiated ribosylzeatin with high specific activity. Phytochemistry 26: 987-989.

    Google Scholar 

  • Moffatt B., Pethe C. and Laloue M. 1991. Metabolism of benzyladenine is impaired in a mutant of Arabidopsis thalianalacking adenine phosphoribosyltransferase activity. Plant Physiol. 95: 900-908.

    Google Scholar 

  • Moffatt B.A., McWhinnie E.A., Agarwal S. and Schaff D.A. 1994. The adenine phosphoribosyltransferase-encoding gene of Arabodopsisthaliana. Gene 143: 211-216.

    Google Scholar 

  • Moffatt B., Wang L., Allan M.S., Stevens Y.Y., Qin W., Snider J. etal. 2000. Adenosine kinase of Arabidopsis. Kinetic properties and gene expression. Plant Physiol. 124: 1775-1785.

    Google Scholar 

  • Mok M.C. 1994. Cytokinins and plant development-an overview. In: Mok D.W.S. and Mok M.C. (eds), Cytokinins: Chemistry, Activity, and Function. CRC Press, Boca Raton, pp. 155-166.

    Google Scholar 

  • Mok D.W.S. and Martin R.C. 1994. Cytokinin metabolic enzymes. In: Mok D.W.S. and Mok M.C. (eds), Cytokinins: Chemistry, Activity, and Function. CRC Press, Boca Raton, pp. 129-137.

    Google Scholar 

  • Morris R.O., Bilyeu K.D., Laskey J.G. and Cheikh N.N. 1999. Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem. Biophys. Res. Commun. 255: 328-333.

    Google Scholar 

  • Reutter K., Atzorn R., Hadeler B., Schmülling T. and Reski R. 1998. Expression of the bacterial iptgene in Physcomitrellarescues mutations in budding and in plastid division. Planta 206: 196-203.

    Google Scholar 

  • Schnorr K.M., Gaillard C., Biget E., Nygaard P. and Laloue M. 1996. A second form of adenine phosphoribosyltransferase in Arabidopsis thalianawith relative specificity towards cytokinins. The Plant Journal 9: 891-898.

    Google Scholar 

  • Schulz P., Reski R., Maldiney R., Laloue M. and von Schwartzenberg K. 2000. Kinetics of cyokinin production and bud formation in Physcomitrella: Analysis of wild type, a developmental mutant and two of its ipttransgenics. J. Plant Physiol. 156: 768-774.

    Google Scholar 

  • Schulz P., Hofmann A., Russo V., Hartmann E., Laloue M. and vonSchwartzenberg K. 2001. Cytokinin overproducing ovemutants of Physcomitrellashow increased riboside to base conversion. Plant Physiol. 126: 1224-1231.

    Google Scholar 

  • Schwartzenberg von K., Kruse S., Reski R., Moffatt B. and Laloue M. 1998. Cloning and characterisation of an adenosine kinas from Physcomitrellainvolved in cytokinin metabolism. ThePlant Journal 13: 249-257.

    Google Scholar 

  • Sembdner G., Atzorn R. and Schneider G. 1994. Plant hormone conjugation. Plant Molecular Biol. 26: 1459-1481.

    Google Scholar 

  • Takei K., Sakakibara H. and Sugiyama T. 2001. Identification of genes encoding adenylate isopentenyltransferase, a cytokininbiosyntheitc enzyme, in Arabidopsis thaliana. J. Biol. Chemistry 276: 26405-26410.

    Google Scholar 

  • Wang T., Cove D.J., Beutelmann P. and Hartmann E. 1980. Isopentenyladenine from mutants of the moss, Physcomitrella patens. Phytochemistry 19: 1103-1105.

    Google Scholar 

  • Wang T.L., Horgan R. and Cove D. 1981. Cytokinins from the moss Physcomitrella patens. Plant Physiol. 68: 735-738.

    Google Scholar 

  • Wang T.L., Futers T.S., Mc Geary F. and Cove D.J. 1984. Mossmutants and the analysis of cytokinin metabolism. In: Crozier A. and Hillman J.R. (eds), The Biosynthesis and Metabolism of Plant Hormones. Cambridge University Press, Cambridge, pp. 135-164.

    Google Scholar 

  • Werner T., Motyka V., Strnad M. and Schmülling T. 2001. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. USA 98: 10487-10492.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Schwartzenberg, K., Pethe, C. & Laloue, M. Cytokinin metabolism in Physcomitrella patens – differences and similarities to higher plants. Plant Growth Regulation 39, 99–106 (2003). https://doi.org/10.1023/A:1022576231875

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022576231875

Navigation