Skip to main content

Occurrence, Interconversion, and Perception of Topolins in Poplar

  • Chapter
  • First Online:
Meta-topolin: A Growth Regulator for Plant Biotechnology and Agriculture

Abstract

The poplar species Populus × canadensis cv. Robusta was the first organism found to contain aromatic cytokinins. Screening of the content of aromatic cytokinins in leaves of 12 Populus species revealed that the capacity to produce aromatic cytokinins is widespread among Populus accessions. The major aromatic metabolites are ortho-topolin and ortho-topolin riboside. Their levels transiently increase after daybreak and are much higher in older plants. Poplar species contain five genes coding for functional CHASE-containing histidine kinases acting as cytokinin receptors. Poplar genome further contains nine isopentenyl transferase genes coding for enzymes responsible for the biosynthesis of isoprenoid cytokinins, two genes coding for adenosine kinase, two genes of nucleoside N-ribohydrolase, and one gene encoding purine nucleoside phosphorylase. These enzymes contribute to interconversion of cytokinin ribosides. Trans-Zeatin is the most abundant cytokinin in poplar and displays the highest variation in abundance. It shows the strongest affinity to all five cytokinin receptors and activates the cytokinin signaling via A-type response regulators. Among aromatic cytokinins, meta-topolin is efficiently bound to all receptors, while ortho-topolin binds only at micromolar concentrations. The origin of topolins in poplar remains unclear, and it is possible that they are not products of poplar metabolism but indeed endophyte-derived products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADK:

Adenosine kinase

BA:

N6-benzyladenine

cZ:

cis-zeatin

HK:

Histidine kinase

iP:

N6-isopentenyladenine

iPR:

N6-isopentenyladenosine

mT:

meta-topolin

NRH:

Nucleoside N-ribohydrolase

oT:

ortho-topolin

PNP:

Purine nucleoside phosphorylase

tZ:

trans-zeatin

tZR:

Zeatin riboside

References

  • Bromley JR, Warnes BJ, Newell CA et al (2014) A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy. Biochem J 458:225–237

    Google Scholar 

  • Chaves dasNeves HJ, Pais MSS (1980) Identification of a spathe greening factor in Zantedeschia-Aethiopica. Biochem Biophys Res Commun 95:1387–1392

    Google Scholar 

  • Chen CM, Petschow B (1978) Metabolism of cytokinin: ribosylation of cytokinin bases by adenosine phosphorylase from wheat germ. Plant Physiol 62:871–874

    Google Scholar 

  • Doležal K, Åstot C, Hanuš J et al (2002) Identification of aromatic cytokinins in suspension cultured photoautotrophic cells of Chenopodium rubrum by capillary liquid chromatography/frit–fast atom bombardment mass spectrometry. Plant Growth Regul 36:181–189

    Google Scholar 

  • Edlund E, Novak O, Karady M et al (2017) Contrasting patterns of cytokinins between years in senescing aspen leaves. Plant Cell Environ 40:622–634

    Google Scholar 

  • Frébort I, Kowalska M, Hluska T et al (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452

    Google Scholar 

  • Girke C, Daumann M, Niopek-Witz S et al (2014) Nucleobase and nucleoside transport and integration into plant metabolism. Front Plant Sci 5:443

    Google Scholar 

  • Hewett EW, Wareing PF (1973) Cytokinins in Populus × robusta (Schneid): light effects on endogenous levels. Planta 114:119–129

    Google Scholar 

  • Heyl A, Wulfetange K, Pils B et al (2007) Evolutionary proteomics identifies amino acids essential for ligand-binding of the cytokinin receptor CHASE domain. BMC Evol Biol 7:62

    Google Scholar 

  • Hirose N, Takei K, Kuroha T et al (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83

    Google Scholar 

  • Holub J, Hanuš J, Hanke DE et al (1998) Biological activity of cytokinins derived from Ortho- and Meta-Hydroxybenzyladenine. Plant Growth Regul 26:109–115

    Google Scholar 

  • Horgan R, Hewett EW, Horgan JM et al (1975) A new cytokinin from Populus × robusta. Phytochemistry 14:1005–1008

    Google Scholar 

  • Jaworek P, Kopečný D, Zalabák D et al (2019) Occurrence and biosynthesis of cytokinins in poplar. Planta 250:229–244

    Google Scholar 

  • Jaworek P, Tarkowski P, Hluska T et al (2020) Characterization of five CHASE-containing histidine kinase receptors from Populus × canadensis cv. Robusta sensing isoprenoid and aromatic cytokinins. Planta 251:1

    Google Scholar 

  • Jones LH, Martinková H, Strnad M et al (1996) Occurrence of aromatic cytokinins in palm oil (Elaeis guineensis Jacq). J Plant Growth Regul 15:39–49

    Google Scholar 

  • Jung B, Flörchinger M, Kunz HH et al (2009) Uridine-ribohydrolase is a key regulator in the uridine degradation pathway of Arabidopsis. Plant Cell 21:876–891

    Google Scholar 

  • Jung B, Hoffmann C, Möhlmann T (2011) Arabidopsis nucleoside hydrolases involved in intracellular and extracellular degradation of purines. Plant J 65:703–711

    Google Scholar 

  • Kopečná M, Blaschke H, Kopečný D et al (2013) Structure and function of nucleoside hydrolases from Physcomitrella patens and maize catalyzing the hydrolysis of purine, pyrimidine, and cytokinin ribosides. Plant Physiol 163:1568–1583

    Google Scholar 

  • Kwade Z, Swiatek A, Azmi A et al (2005) Identification of four adenosine kinase isoforms in tobacco By-2 cells and their putative role in the cell cycle-regulated cytokinin metabolism. J Biol Chem 280:17512–17519

    Google Scholar 

  • Moffatt BA, Wang L, Allen MS et al (2000) Adenosine kinase of Arabidopsis. Kinetic properties and gene expression. Plant Physiol 124:1775–1785

    Google Scholar 

  • Nandi SK, Letham DS, Palni LMS et al (1989a) 6-Benzylaminopurine and its glycosides as naturally occurring cytokinins. Plant Sci 61:189–196

    Google Scholar 

  • Nandi SK, Palni LMS, Letham DS et al (1989b) Identification of cytokinins in primary crown gall tumours of tomato. Plant Cell Environ 12:273–283

    Google Scholar 

  • Schoor S, Farrow S, Blaschke H et al (2011) Adenosine kinase contributes to cytokinin interconversion in Arabidopsis. Plant Physiol 157:659–672

    Google Scholar 

  • Shaw G (1994) Chemistry of adenine cytokinins. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC, Boca Raton, FL, pp 15–34

    Google Scholar 

  • Strnad M, Peters W, Beck E et al (1992) Immunodetection and identification of N6-(o-hydroxybenzylamino)purine as a naturally occurring cytokinin in Populus × canadensis Moench cv. Robusta leaves. Plant Physiol 99:74–80

    Google Scholar 

  • Strnad M, Peters W, Hanuš J et al (1994) Ortho-topolin-9-glucoside, an aromatic cytokinin from Populus × canadensis cv. Robusta leaves. Phytochemistry 37:1059–1062

    Google Scholar 

  • Strnad M, Hanus J, Vanek T et al (1997) Meta-topolin, a highly active aromatic cytokinin from poplar leaves (Populus × canadensis Moench., cv. Robusta). Phytochemistry 45:213–218

    Google Scholar 

  • Tarkowská D, Doležal K, Tarkowski P et al (2003) Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus × canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography/frit–fast atom bombardment mass spectrometry. Physiol Plant 117:579–590

    Google Scholar 

  • Wang Y, Zhang W, Ding C et al (2019) Endophytic communities of transgenic poplar were determined by the environment and niche rather than by transgenic events. Front Microbiol 10:588

    Google Scholar 

  • Wormit A, Traub M, Flörchinger M et al (2004) Characterization of three novel members of the Arabidopsis thaliana equilibrative nucleoside transporter (ENT) family. Biochem J 383:19–26

    Google Scholar 

Download references

Acknowledgments

This study is supported by grant no. 18-07563S from the Czech Science Foundation and ERDF project “Plants as a tool for sustainable global development” (No. CZ.02.1.01/0.0/0.0/16_019/0000827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kopečný .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kopečný, D., Kaczorová, D., Tarkowski, P. (2021). Occurrence, Interconversion, and Perception of Topolins in Poplar. In: Ahmad, N., Strnad, M. (eds) Meta-topolin: A Growth Regulator for Plant Biotechnology and Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-9046-7_4

Download citation

Publish with us

Policies and ethics