Skip to main content
Log in

Finite temperature non-Fermi liquids

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Finite temperature properties of a non-Fermi liquid system is analysed based on the temperature dependent Bethe Ansatz equations. We focus mostly on the one-dimensional Hubbard model, as this model is the prototypical model for a non-Fermi liquid system and this is an ideal system to study since it is exactly solvable even at finite temperatures. At finite temperatures spin and charge separation still holds, however the low energy excitations have a spin gap. The properties of this state will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M.R. Presland et al., Physica C 176, 95 (1991).

    Google Scholar 

  2. J.L. Tallon et al., Phys. Rev. B 51, 12911 (1995).

    Google Scholar 

  3. J.D. Jorgensen et al., Physica C 171, 93 (1990).

    Google Scholar 

  4. H.A. Ludwig et al., Physica C 197, 113 (1992).

    Google Scholar 

  5. T. Zenner et al., Journal of Low Temperature Physics 105, 909 (1996).

    Google Scholar 

  6. T.B. Lindemer et al., J. Am. Ceram. Soc. 72, 1775 (1989). C. Gledel et al., Physica C 165, 437 (1990). J.-F. Marucco et al., Physica C 160, 73 (1989).

    Google Scholar 

  7. T.B. Lindemer et al., Physica C 255, 65 (1995).

    Google Scholar 

  8. R. Sieburger et al., Physica C 173, 403 (1991).

    Google Scholar 

  9. W.H. Fietz et al., in High Pressure Science and Technology, Colorado Springs, 1993, ed. by S.C. Schmidt et al., AIP Conf. No. 309 (AIP, New York, 1993), 703.

    Google Scholar 

  10. W.H. Fietz et al., Physica C 270, 258 (1996).

    Google Scholar 

  11. S. Sadewasser et al., Phys. Rev. B 56, 14168 (1997).

    Google Scholar 

  12. M. Buchgeister et al., Proc. ICTPS '90 Int. Conf. on Transp. Prop. of Supercond., Ed.: R. Nicolsky. Singapore: World Scientific,, 511 (1990) Conf.: Rio de Janeiro, Brazil, 1990

    Google Scholar 

  13. R. Beyers et al., Solid State Phys. 42, 135 (1989).

    Google Scholar 

  14. M.v. Zimmermann, DESY-THESIS-1998-013, (1998).

  15. B.W. Veal et al., Physica C 184, 321 (1991).

    Google Scholar 

  16. G. Ceder et al., Physica C 177, 106 (1991).

    Google Scholar 

  17. H. Lütgemeier et al., Physica C 267, 191 (1996).

    Google Scholar 

  18. O. Kraut et al., Physica C 205, 139 (1993).

    Google Scholar 

  19. C. Meingast et al., J. of Low Temp. Phys. 105, 1391 (1996).

    Google Scholar 

  20. H.A. Ludwig et al., J. of Low Temp. Phys. 105, 1385 (1996). U. Welp et al., Phys. Rev. Lett. 69, 2130 (1992). U. Welp et al., J. of Supercond. 7, 159 (1994).

    Google Scholar 

  21. H.A. Ludwig et al., Physica C 197, 113 (1992).

    Google Scholar 

  22. J.J. Neumeier et al., Phys. Rev. B 47, 8385 (1993).

    Google Scholar 

  23. D. Goldschmidt et al., Phys. Rev. B 53, 14631 (1996).

    Google Scholar 

  24. G. Böttger et al., J. Phys.: Condenced Matter 8, 8889 (1996).

    Google Scholar 

  25. B. Fisher et al., Phys. Rev. B 47, 6054 (1993).

    Google Scholar 

  26. J.-P. Loquet et al., Nature 394, 453 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulacsi, M., Bowen, G. & Rosengren, A. Finite temperature non-Fermi liquids. Journal of Low Temperature Physics 117, 313–316 (1999). https://doi.org/10.1023/A:1022553213205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022553213205

Keywords

Navigation