Skip to main content

Renormalization Group and Fermi Liquid Theory for Many-Nucleon Systems

  • Chapter
  • First Online:
Renormalization Group and Effective Field Theory Approaches to Many-Body Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 852))

Abstract

We discuss renormalization group approaches to strongly interacting Fermi systems, in the context of Landau’s theory of Fermi liquids and functional methods, and their application to neutron matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At non-zero temperature, the imaginary part of the self-energy never vanishes and the quasiparticle life-time is finite. However, for \(T \ll \mu \) and \(\omega \approx \mu \), the life-time is large and the quasiparticle concept is useful.

  2. 2.

    This is readily seen by evaluating \(G(z=\omega \pm i\delta ,\mathbf p )\) for a spectral function of the quasiparticle form,

    $$\begin{aligned} \rho (\omega ,\mathbf p ) = \frac{1}{\pi } \frac{\varGamma _{\mathbf p }/2}{(\omega - \varepsilon _{\mathbf p })^2 + \varGamma _{\mathbf p }^2/4} , \end{aligned}$$
    (5.42)

    using the Källén-Lehmann representation for the Green’s function at a complex argument,

    $$\begin{aligned} G(z,\mathbf p ) = \int _{-\infty }^{\infty } d\omega ^{\prime } \, \frac{\rho (\omega ^{\prime },\mathbf p )}{z - \omega ^{\prime }} . \end{aligned}$$
    (5.43)

    One then finds that \(G(\omega \pm i\delta ,\mathbf p ) = (\omega - \varepsilon _{\mathbf p } \pm i \varGamma _{\mathbf p }/2)^{-1}\). This implies that for \(\omega \) in the upper half plane the quasiparticle pole is in the lower half plane and vice versa.

  3. 3.

    The BCS singularity for back-to-back scattering, \(P=0\), is discussed in Sect. 5.3.

  4. 4.

    The 1PI effective action is obtained by constraining the Green’s function in the 2PI effective action to the solution of the Dyson equation, Eq. (5.99).

  5. 5.

    The resulting flow equation, Eq. (5.119), is consistent with Eq. (5.5), if we make the natural identification \(\delta n_{\mathbf p } = -n_{\mathbf p }^0 \, \delta (|\mathbf p | -(k_F-\varLambda )) \, \text{ d} \varLambda \).

  6. 6.

    For vanishing external sources, all vertices with an odd number of external fermion lines vanish.

  7. 7.

    In finite systems, the spin and density response differs. In nuclei with cores, the low-lying response is due to surface vibrations. Consequently, induced interactions may be attractive, because the spin response is weaker [57].

  8. 8.

    For \(k_{\text{ F}}\approx 0. 4 \, \text{ fm}^{-1}\), neutron matter is close to the universal regime, but theoretically simpler due to an appreciable effective range \(k_{\text{ F}}r_\mathrm{e } \approx 1\) [58].

References

  1. Shankar, R.: Rev. Mod. Phys. 66, 129 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  2. Harvey, J., Polchinski, J. (eds.): Proceedings of the 1992 Theoretical Advanced Studies Institute in Elementary Particle Physics. World Scientific, Singapore (1993). hep-th/9210046

    Google Scholar 

  3. Gies, H.: Lectures in this Volume. hep-ph/0611146

    Google Scholar 

  4. Metzner, W., Salmhofer, M., Honerkamp, C., Meden, V., Schönhammer, K.: arXiv:1105.5289

    Google Scholar 

  5. Landau, L.D.: Sov. Phys. JETP 3, 920 (1957)

    MATH  Google Scholar 

  6. Landau, L.D.: Sov. Phys. JETP 5, 101 (1957)

    MATH  Google Scholar 

  7. Landau, L.D.: Sov. Phys. JETP 8, 70 (1959)

    Google Scholar 

  8. Larkin, A., Migdal, A.B.: Sov. Phys. JETP 17, 1146 (1963)

    Google Scholar 

  9. Leggett, A.J.: Phys. Rev. A 140, 1869 (1965); ibid. 147, 119 (1966)

    Google Scholar 

  10. Baym, G., Pethick, C.J.: Landau Fermi Liquid Theory: Concepts and Applications. Wiley, New York (1991)

    Book  Google Scholar 

  11. Migdal, A.B.: Theory of Finite Fermi Systems and Applications to Atomic Nuclei. Interscience, New York (1967)

    Google Scholar 

  12. Bäckman, S.-O., Brown, G.E., Niskanen, J.: Phys. Rept. 124, 1 (1985)

    Article  ADS  Google Scholar 

  13. Schwenk, A., Friman, B.: Phys. Rev. Lett. 92, 082501 (2004)

    Article  ADS  Google Scholar 

  14. Pomeranchuk, I.Y.: Sov. Phys. JETP 8, 361 (1959)

    Google Scholar 

  15. Pines, D., Nozières, P.: The Theory of Quantum Liquids, vol. 1, Advanced Book Classics. Westview Press, Boulder (1999)

    Google Scholar 

  16. Vollhardt, D., Wölfle, P.: The Superfluid Phases of Helium 3. Taylor and Francis, London (1990)

    Google Scholar 

  17. Bogner, S.K., Kuo, T.T.S., Schwenk, A.: Phys. Rept. 386, 1 (2003); Bogner, S.K., Furnstahl, R.J., Schwenk, A.: Prog. Part. Nucl. Phys. 65, 94 (2010)

    Google Scholar 

  18. Schwenk, A., Friman, B., Brown, G.E.: Nucl. Phys. A 713, 191 (2003)

    Article  ADS  MATH  Google Scholar 

  19. Schwenk, A., Brown, G.E., Friman, B.: Nucl. Phys. A 703, 745 (2002)

    Article  ADS  Google Scholar 

  20. Kaiser, N.: Nucl. Phys. A 768, 99 (2006); Holt, J.W., Kaiser, N., Weise, W.: Nucl. Phys. A 870871, 1 (2011)

    Google Scholar 

  21. Epelbaum, E., Hammer, H.-W., Meißner, U.-G.: Rev. Mod. Phys. 81, 1773 (2009)

    Article  ADS  Google Scholar 

  22. Bogner, S.K., Schwenk, A., Furnstahl, R.J., Nogga, A.: Nucl. Phys. A 763, 59 (2005); Hebeler, K., Schwenk, A.: Phys. Rev. C 82, 014314 (2010); Hebeler, K., Bogner, S.K., Furnstahl, R.J., Nogga, A., Schwenk, A.: Phys. Rev. C 83, 031301(R) (2011)

    Google Scholar 

  23. Otsuka, T., Suzuki, T., Holt, J.D., Schwenk, A., Akaishi, Y.: Phys. Rev. Lett. 105, 032501 (2010); Holt, J.D., Otsuka, T., Schwenk, A., Suzuki, T.: arXiv:1009.5984

    Google Scholar 

  24. Pethick, C.J.: In: Mahantappa, K.T., Brittin, W.E. (eds.) Lectures in Theoretical Physics, vol. XI-B, Boulder, Colorado, 1968, p. 187. Gordon and Breach, New York (1969)

    Google Scholar 

  25. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. Dover, New York (2003)

    Google Scholar 

  26. Abrikosov, A.A., Gor’kov, L.P., Dzyaloshinski, I.E.: Methods of Quantum Field Theory in Statistical Physics. Dover, New York (1963)

    MATH  Google Scholar 

  27. Negele, J.W., Orland, H.: Quantum Many-Particle Systems: Advanced Book Classics. Westview Press, Boulder (1998)

    Google Scholar 

  28. Altland, A., Simons, B.: Condensed Matter Field Theory. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  29. Abrikosov, A.A., Khalatnikov, I.M.: Rept. Prog. Phys. 22, 329 (1959)

    Article  ADS  Google Scholar 

  30. Bäckman, S.-O., Sjöberg, O., Jackson, A.D.: Nucl. Phys. A 321, 10 (1979)

    Article  ADS  Google Scholar 

  31. Friman, B.L., Dhar, A.K.: Phys. Lett. B 85, 1 (1979)

    Article  ADS  Google Scholar 

  32. Cornwall, J.M., Jackiw, R., Tomboulis, E.: Phys. Rev. D 10, 2428 (1974)

    Article  ADS  MATH  Google Scholar 

  33. Luttinger, J.M., Ward, J.C.: Phys. Rev. 118, 1417 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Baym, G.: Phys. Rev. 127, 1391 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Wetterich, C.: Phys. Rev. B 75, 085102 (2007)

    Article  ADS  Google Scholar 

  36. Nozières, P.: Theory of Interacting Fermi Systems. Westview Press, Boulder (1997)

    Google Scholar 

  37. Babu, S., Brown, G.E.: Ann. Phys. 78, 1 (1973)

    Article  ADS  Google Scholar 

  38. Wetterich, C.: Phys. Lett. B 301, 90 (1993)

    Article  ADS  Google Scholar 

  39. Berges, J., Tetradis, N., Wetterich, C.: Phys. Rept. 363, 223 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Dupuis, N.: Eur. Phys. J. B 48, 319 (2005)

    Article  ADS  Google Scholar 

  41. Hebeler, K.: PhD Thesis, Technische Universität Darmstadt (2007)

    Google Scholar 

  42. Morris, T.M.: Nucl. Phys. B 458, 477 (1996)

    Article  ADS  Google Scholar 

  43. Ellwanger, U.: Z. Physik C 62, 503 (1994)

    Article  ADS  Google Scholar 

  44. Bogner, S.K., Furnstahl, R.J., Ramanan, S., Schwenk, A.: Nucl. Phys. A 773, 203 (2006); Ramanan, S., Bogner, S.K., Furnstahl, R.J.: Nucl. Phys. A 797, 81 (2007)

    Google Scholar 

  45. Ainsworth, T.L., Wambach, J., Pines, D.: Phys. Lett. B 222, 173 (1989)

    Article  ADS  Google Scholar 

  46. Wambach, J., Ainsworth, T.L., Pines, D.: Nucl. Phys. A 555, 128 (1993)

    Article  ADS  Google Scholar 

  47. Bäckman, S.-O., Källman, C.-G., Sjöberg, O.: Phys. Lett. B 43, 263 (1973)

    ADS  Google Scholar 

  48. Jackson, A.D., Krotschek, E., Meltzer, D.E., Smith, R.A.: Nucl. Phys. A 386, 125 (1982)

    Article  ADS  Google Scholar 

  49. Cao, L.G., Lombardo, U., Schuck, P.: Phys. Rev. C 74, 064301 (2006)

    Article  ADS  Google Scholar 

  50. Yakovlev, D.G., Pethick, C.J.: Annu. Rev. Astron. Astrophys. 42, 169 (2004); Blaschke, D., Grigorian, H., Voskresensky, D.N.: Astron. Astrophys. 424, 979 (2004); Page, D., Lattimer, J.M., Prakash, M., Steiner, A.W.: Astrophys. J. Suppl. 155, 623 (2004)

    Google Scholar 

  51. Cackett, E.M., Wijnands, R., Linares, M., Miller, J.M., Homan, J., Lewin, W.: Mon. Not. Roy. Astron. Soc. 372, 479 (2006); Cackett, E.M., Wijnands, R., Miller, J.M., Brown, E.F., Degenaar, N.: Astrophys. J. 687, L87 (2008); Brown, E.F., Cumming, A.: Astrophys. J. 698, 1020 (2009)

    Google Scholar 

  52. Lesinski, T., Duguet, T., Bennaceur, K.,Meyer, J.: Eur. Phys. J. A 40, 121 (2009); Hebeler, K., Duguet, T., Lesinski, T., Schwenk, A.: Phys. Rev. C 80, 044321 (2009); Lesinski, T., Hebeler, K., Duguet, T., Schwenk, A.: J. Phys. G 39, 015108 (2012)

    Google Scholar 

  53. Hebeler, K., Schwenk, A., Friman, B.: Phys. Lett. B 648, 176 (2007)

    Article  ADS  Google Scholar 

  54. Baldo, M., Elgaroy, O., Engvik, L., Hjorth-Jensen, M., Schulze, H.-J.: Phys. Rev. C 58, 1921 (1998)

    Article  ADS  Google Scholar 

  55. Gezerlis, A., Carlson, J.: Phys. Rev. C 81, 025803 (2010)

    Article  ADS  Google Scholar 

  56. Gorkov, L.P., Melik-Barkhudarov, T.K.: Sov. Phys. JETP 13, 1018 (1961); Heiselberg, H., Pethick, C.J., Smith, H., Viverit, L.: Phys. Rev. Lett. 85, 2418 (2000)

    Google Scholar 

  57. Barranco, F., Broglia, R.A., Colo, G., Gori, G., Vigezzi, E., Bortignon, P.F.: Eur. Phys. J. A 21, 57 (2004); Pastore, A., Barranco, F., Broglia, R.A., Vigezzi, E.: Phys. Rev. C 78, 024315 (2008)

    Google Scholar 

  58. Schwenk, A., Pethick, C.J.: Phys. Rev. Lett. 95, 160401 (2005)

    Article  ADS  Google Scholar 

  59. Page, D., Prakash, M., Lattimer, J.M., Steiner, A.W.: Phys. Rev. Lett. 106, 081101 (2011); Shternin, P.S., Yakovlev, D.G., Heinke, C.O., Ho, W.C.G., Patnaude, D.J.: Mon. Not. Roy. Astron. Soc. 412, L108 (2011)

    Google Scholar 

  60. Glazek, S.D., Wilson, K.G.: Phys. Rev. D 48, 5863 (1993); Wegner, F.: Ann. Phys. (Leipzig) 3, 77 (1994)

    Google Scholar 

  61. Bogner, S.K., Furnstahl, R.J., Perry, R.J.: Phys. Rev. C 75, 061001(R) (2007)

    Google Scholar 

  62. Tsukiyama, K., Bogner, S.K., Schwenk, A.: Phys. Rev. Lett. 106, 222502 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSERC and by the Alliance Program of the Helmholtz Association (HA216/EMMI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengt Friman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Friman, B., Hebeler, K., Schwenk, A. (2012). Renormalization Group and Fermi Liquid Theory for Many-Nucleon Systems. In: Schwenk, A., Polonyi, J. (eds) Renormalization Group and Effective Field Theory Approaches to Many-Body Systems. Lecture Notes in Physics, vol 852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27320-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27320-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27319-3

  • Online ISBN: 978-3-642-27320-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics