Skip to main content
Log in

Hydrodynamical Reformulation and Quantum Limit of The Barut–Zanghi Theory

  • Published:
Foundations of Physics Letters

Abstract

One of the most satisfactory pictures for spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic extended-like electron, that relates spin to zitterbewegung (zbw). The BZ motion equations constituted the starting point for recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra language. This language results to be actually suited for a hydrodynamical reformulation of the BZ theory. Working out a “probabilistic fluid,” we are allowed to reinterpret the original classical spinors as quantum wave-functions for the electron. We can pass to “quantize” the BZ theory: by employing this time the tensorial language, more popular in first-quantization. “Quantizing” the BZ theory, however, does notlead to the Dirac equation, but rather to a nonlinear, Dirac–like equation, which can be regarded as the actual “quantum limit” of the BZ classical theory. Moreover, a new variational approach to the BZ probabilistic fluid shows that it is a typical “Weyssenhoff fluid,” while the Hamilton-Jacobi equation (linking mass, spin,and zbw frequency together) appears to be nothing but a special case of the de Broglie energy–frequency relation. Finally, after having discussed the remarkable relation existing between the gauge transformation U(1) and ageneral rotation on the spin plane, we clarify and comment on the two-valuedeness nature of the fremionic wave-function, as well as on the parity and charge conjugation transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. H. Compton, Phys. Rev. 14 (1919) 20, 247, and references therein.

    Article  ADS  Google Scholar 

  2. G. E. Uhlenbeck and S. A. Goudsmit, Nature 117 (1926) 264.

    Article  ADS  Google Scholar 

  3. J. Frenkel, Z. Phys. 37 (1926) 243.

    Article  ADS  Google Scholar 

  4. P. A. M. Dirac, The Principles of Quantum Mechanics (Claredon, Oxford, 1958), 4th edn., p.262. J. Maddox, “Where Zitterbewegung may lead,” Nature 325 (1987) 306. W. H. Bostick, “Hydromagnetic model of an elementary particle,” in Gravity Research Found. Essay Contest, 1958 and 1961.

    Google Scholar 

  5. M. Mathisson, Acta Phys. Pol. 6 (1937) 163. H. Hönl and A. Papapetrou, Z. Phys. 112 (1939) 512; 116 (1940) 153. M. J. Bhabha and H. C. Corben, Proc. Roy. Soc. (London) A 178 (1941) 273. K. Huang, Am. J. Phys. 20 (1952) 479. H. Hönl, Ergeb. Exacten Naturwiss. 26 (1952) 29. A. Proca, J. Phys. Radium 15 (1954) 5. M. Bunge, Nuovo Cimento 1 (1955) 977. F. Gursey, Nuovo Cimento 5 (1957) 784. H. C. Corben, Classical and quantum theories of spinning particles (Holden-Day, San Francisco, 1968). B. Liebowitz, Nuovo Cimento A 63 (1969) 1235. A. J. Kálnay et al., Phys. Rev. 158 (1967) 1484; D 1 (1970) 1092; D 3 (1971) 2357; D 3 (1971) 2977. H. Jehle, Phys. Rev. D 3 (1971) 306. F. Riewe, Lett. Nuovo Cim. 1 (1971) 807. F. A. Berezin and M. S. Marinov, J.E.T.P. Lett. 21 (1975) 32. R. Casalbuoni, Nuovo Cimento A 33 (1976) 389. G. A. Perkins, Found. Phys. 6 (1976) 237. D. Gutkowski, M. Moles and J.-P. Vigier, Nuovo Cim. B 39 (1977) 193. A. O. Barut, Z. Naturforsch. A 33 (1978) 993. J. A. Lock, Am. J. Phys. 47 (1979) 797. M. Pauri, in Lecture Notes in Physics, Vol.135 (Springer, Berlin, 1980), p.615. W. A. Rodrigues, J. Vaz, and E. Recami, Found. Phys. 23 (1993) 459.

    Google Scholar 

  6. E. P. Wigner, Ann. Phys. 40 (1939) 149. M. H. L. Pryce, Proc. Royal Soc. (London) A 195 (1948) 6. T. F. Jordan and M. Mukunda, Phys. Rev. 132 (1963) 1842. G. N. Fleming, Phys. Rev. B 139 (1965) 903. H. C. Corben, Phys. Rev. 121 (1961) 1833; D 30 (1984) 2683; Am. J. Phys. 45 (1977) 658; 61 (1993) 551; Int. J. Theor. Phys. 34 (1995) 19. F. A. Ikemori, Phys. Lett. B 199 (1987) 239. Ph. Gueret, Lectures at Bari university (Bari, 1989). G. Cavalleri, Phys. Rev. D 23 (1981) 363; Nuovo Cim. B 55 (1980) 392; C 6 (1983) 239; Lett. Nuovo Cim. 43 (1985) 285.

    MathSciNet  Google Scholar 

  7. E. Schrödinger, Sitzunger. Preuss. Akad. Wiss. Phys. Math. Kl. 24 (1930) 418; 3 (1931) 1.

    Google Scholar 

  8. A. O. Barut and N. Zanghi, Phys. Rev. Lett. 52 (1984) 2009. A. O. Barut and A. J. Bracken, Phys. Rev. D 23 (1981) 2454; D 24 (1981) 3333. A. O. Barut and I. H. Duru, Phys. Rev. Lett. 53 (1984) 2355. A. O. Barut and M. Pavšič, Class. Quantum Grav. 4 (1987) L131; Phys. Lett. B 216 (1989) 297. M. Pavšič, Phys. Lett. B 205 (1988) 231; B 221 (1989) 264; Class. Quant. Grav. 7 (1990) L187.

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Pavšič, E. Recami, W. A. Rodrigues, G. D. Maccarrone, F. Raciti, and G. Salesi, Phys. Lett. B 318 (1993) 481. W. A. Rodrigues, J. Vaz, E. Recami, and G. Salesi, Phys. Lett. B 318 (1993) 623. J. Vaz and W. A. Rodrigues, Phys. Lett. B 319 (1993) 203. G. Salesi and E. Recami, Phys. Lett. A 190 (1994) 137; 195 (1994) E389. E. Recami and G. Salesi, Adv. Appl. Cliff. Alg. 6 (1996) 27; “Field theory of the electron: spin and zitterbewegung,” in Gravity, Particles and Space-Time, P.Pronin and G.Sardanashvily eds. (World Scientific, Singapore, 1996), pp.345-368; “Hydrodynamics and kinematics of spinning particles,” Phys. Rev. A (in press).

    Article  MathSciNet  Google Scholar 

  10. D. Hestenes, Am. J. Phys. 39 (1971) 1028; 39 (1971) 1013; 47 (1979) 399; J. Math. Phys. 14 (1973) 893; 16 (1975) 573; 16 (1975) 556; 8 (1979) 798; Found. Phys. 15 (1985) 63; 20 (1990) 1213, 23 (1993) 365; Space-Time Algebra (Gordon & Breach, New York, 1966); New Foundations for Classical Mechanics (Kluwer Academic, Dordrecht, 1986). D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus (Reidel, Dordrecht, 1984). D. Hestenes and A. Weingartshofer, eds., The Electron (Kluwer Academic, Dordrecht, 1991).

    Article  ADS  MathSciNet  Google Scholar 

  11. See, e.g., M. A. Faria-Rosa, E. Recami, and W. A. Rodrigues, Phys. Lett. B 173 (1986) 233. A. Maia, E. Recami, W. A. Rodrigues, and M. A. F. Rosa, J. Math. Phys. 31 (1990) 502. W. A. Rodrigues, E. Recami, A. Maia, and M. A. F. Rosa, Phys. Lett. B 220 (1989) 195.

    Article  MathSciNet  Google Scholar 

  12. J. Weyssenhof and A. Raabe, Acta Phys. Pol. 9 (1947) 7.

    Google Scholar 

  13. G. Salesi, Mod. Phys. Lett. A11 (1996) 1815. See also G. Salesi and E. Recami, “A velocity field and operator for spinning particles in (non-relativistic) quantum mechanics,” to appear in Found. Phys. (issue in memory of A.O.Barut).

    Article  ADS  MathSciNet  Google Scholar 

  14. See, e.g., L. D. Landau and E. M. Lifshits, Teoria Quantistica Relativistica (Editori Riuniti-Edizioni MIR, Roma, 1978), p.148.

    Google Scholar 

  15. E. Recami and G. Ziino, Nuovo Cim. A 33 (1976) 205. For the physical interpretation of the negative frequency waves, without any recourse to a “Dirac sea,” see E. Recami, Found. Phys. 8 (1978) 329. E. Recami and W. A. Rodrigues, Found. Phys. 12 (1982) 709; 13 (1983) 533. M. Pavšič and E. Recami, Lett. Nuovo Cim. 34 (1982) 357. Cf. also R. Mignani and E. Recami, Lett. Nuovo Cim. 18 (1977) 5; A. Garuccio et al., Lett. Nuovo Cim. 27 (1980) 60.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salesi, G., Recami, E. Hydrodynamical Reformulation and Quantum Limit of The Barut–Zanghi Theory. Found Phys Lett 10, 533–546 (1997). https://doi.org/10.1023/A:1022493101954

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022493101954

Navigation