Skip to main content

The Pearcey Equation: From the Salpeter Relativistic Equation to Quasiparticles

  • Chapter
  • First Online:
Nonlocal and Fractional Operators

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 26))

Abstract

This work presents the Pearcey equation, a quasi-relativistic wave equation for spinless particles with non-zero rest mass. This equation was introduced as a mathematical tool to address the problem of nonlocality concerning the pseudo-differential operator in the Hamiltonian of the Salpeter equation. The Pearcey equation can be considered as a way to relativity since it embeds the peculiar features of the relativistic evolution even if it looks very similar to the Schrödinger equation. In light of the catastrophe theory, the Pearcey equation acquires a deeper physical meaning as a candidate for describing quasiparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Purrington, R.D.: Physics in the Nineteenth century, NJ. Rutgers University Press, New Brunswick (1997)

    MATH  Google Scholar 

  2. Messiah, A.: Quantum Mechanics, vol. II. Dover Publications Inc, New York (2014)

    MATH  Google Scholar 

  3. Sakurai, J.J., Napolitano, J.J.: Modern Quantum Mechanics, 2nd ed. Addison-Wesley, San Francisco, (2010)

    Google Scholar 

  4. Feyman, R.P., Bleighton, R., Sands, M.: The Feyman lectures of Physics - Vol. III: Quantum Mechanics, first ed. Addison-Wesley, Massachusetts (1965)

    Google Scholar 

  5. Michelson, A.A.: Light Waves and Their Uses. University of Chicago, 1903, pp. 23–24

    Google Scholar 

  6. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28(6), 10491070 (1926)

    Article  Google Scholar 

  7. De Broglie, L.: Recherches sur la théorie des quanta (Researches on the quantum theory), Thesis, Paris, 1924, Ann. de Physique (10) 3, 22 (1925)

    Google Scholar 

  8. Bloch, F.: Phys. Today 29(12), 23–24 (1976)

    Article  Google Scholar 

  9. A. Einstein, Letter to P. S. Epstein, 10 November 1945, extract from D. Howard [1990] p. 103

    Google Scholar 

  10. Petersen, A.: The philosophy of Niels Bohr. Bulletin of the Atomic Scientists 19, 7 (1963)

    Article  Google Scholar 

  11. Salpeter, E.E., Bethe, H.A.: A relativistic equation for bound-state problems. Phys. Rev. 84, 1232–1242 (1951)

    Article  MathSciNet  Google Scholar 

  12. Salpeter, E.E.: Mass corrections to the fine structure of hydrogen-like atoms. Phys. Rev. 87, 328–343 (1952)

    Article  Google Scholar 

  13. Greiner, W., Reinhardt, J.: Quant. Electrodyn. Springer-Verlag, Berlin (1994)

    Book  Google Scholar 

  14. Lattanzi, A.: Thesis, University of Rome Three (I), 2016

    Google Scholar 

  15. Torre, A., Lattanzi, A., Levi, D.: Time-Dependent Free-Particle Salpeter Equation: Numerical and Asymptotic Analysis in the Light of the Fundamental Solution. Annalen der Physik (2017)

    Google Scholar 

  16. A. Torre, A. Lattanzi and D. Levi, Time-Dependent Free-Particle Salpeter Equation: Features of the Solutions, in: Dobrev V. (eds) Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2. LT-XII/QTS-X: Springer Proceedings in Mathematics & Statistics, vol. 255. Springer, Singapore (2017)

    Google Scholar 

  17. Lattanzi, A., Levi, D., Torre, A.: The missing piece: a new relativistic wave equation, the Pearcey equation. Journal of Physics: Conference Series. Vol. 1194. No. 1. IOP Publishing, (2019)

    Google Scholar 

  18. Lattanzi, A., Levi, D., Torre, A.: Evolution Equations in a Nutshell, Proceeding of the conference organized by Society of Physicist of Macedonia and Institute of Physics PMF Ss. Cyril and Methodius University Skopje, Macedonia. Published in Conference Proceedings CSPM 2018 (2019)

    Google Scholar 

  19. Lattanzi, A.: How to deal with nonlocality and pseudodifferential operators. An example: the Salpeter equation, Accepted to be published in the proceeding of Quantum Theory and Symmetry-XI Conference in Montréal edited by Springer (2020)

    Google Scholar 

  20. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, Zwillinger, D., Moll, V. (Eds.), Eighth Edition. Academic Press (2014)

    Google Scholar 

  21. Klein, O.: Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik 37, 895–906 (1926)

    Article  Google Scholar 

  22. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928)

    Article  Google Scholar 

  23. Frederico, T., Pace, E., Pasquini, B., Salmè, G.: Generalized parton distributions of the pion in a covariant Bethe-Salpeter model and light-front models. Nucl. Phys. Proc. Suppl. 199, 264–269 (2010)

    Article  Google Scholar 

  24. Frederico, T., Salmè, G.: Projecting the Bethe-Salpeter equation onto the light-front and back: A short review. Few Body Syst. 49, 163–175 (2011)

    Article  Google Scholar 

  25. Frederico, T., Salmè, G., Viviani, M.: Quantitative studies of the homogeneous Bethe-Salpeter equation in Minkowski space. Phys. Rev. D 89, 016010 (2014)

    Article  Google Scholar 

  26. Salmè, G., Frederico, T., Viviani, M.: Quantitative studies of the homogeneous Bethe-Salpeter equation in Minkowski space. Few Body Syst. 55, 693–696 (2014)

    Article  Google Scholar 

  27. Kowalski, K., Rembieliński, J.: The Salpeter equation and probability current in the relativistic Hamiltonian quantum mechanics. Phys. Rev. A 84, 012108 (2011)

    Article  Google Scholar 

  28. Dattoli, G., Sabia, E., Górska, K., Horzela, A., Penson, K.A.: Relativistic wave equations: An operational approach. J. Phys. A: Math. Theor. 48, 125203 (2015)

    Article  MathSciNet  Google Scholar 

  29. Foldy, L.L.: Synthesis of covariant particle equations. Phys. Rev. 102, 568–581 (1956)

    Article  MathSciNet  Google Scholar 

  30. Nickisch, L.J., Durand, L.J., Durand, B.: Salpeter equation in position space: numerical solutions for arbitrary confining potentials, Phys. Rev. D 30, 660-70 (1984) Erratum Phys. Rev. 30 (3), (1984)

    Google Scholar 

  31. Basdevant, J.L., Boukraa, S.: Success and difficulties of unified quark-antiquark potential models, Z. Phys. C - Part. & Fields 28, 413–426 (1985)

    Article  Google Scholar 

  32. Friar, J.L., Tomusiak, E.L.: Relativstically corrected Schrödinger equation with Coulomb interaction. Phys. Rev. C 29, 1537–1539 (1984)

    Article  Google Scholar 

  33. Pearcey, T.: The structure of an electromagnetic field in the neighborhood of a cusp of a caustic. Phil. Mag. S. 737, 311317 (1946)

    MathSciNet  Google Scholar 

  34. Poston, T., Stewart, I.: Catastrophe Theory and its Applications. Dover Publications Inc. (1997)

    Google Scholar 

  35. Berry, M.V., Upstill, C.: Catastrophe optics: morphologies of caustics and their diffraction patterns. Prog. Opt. 18, 257346 (1980)

    Google Scholar 

  36. El Gawhary, O., Severini, S.: Lorentz beams and symmetries properties in paraxial optics. J. Opt. A: Pure Appl. Opt. 8, 409–414 (2006)

    Article  Google Scholar 

  37. Dumke, W.P.: The angular beam divergence in double-heterojunctiojn lasers with very thin active regions. IEEE J. Quant. Electron. 11, 400–402 (1975)

    Article  Google Scholar 

  38. Naqwi, A., Durst, F.: Focus of diode laser beams: A simple mathematical model. Appl. Opt. 29, 17801785 (1990)

    Article  Google Scholar 

  39. Yang, J., Chen, T., Ding, G., Yuan, X.: Focusing of diode laser beams: a partially coherent Lorentz model. Proc. SPIE 6824, 68240A (2008)

    Article  Google Scholar 

  40. Borghi, R.: On the numerical evaluation of cuspoid diffraction catastrophes. J. Opt. Soc. Am. 25, 1682–1690 (2008)

    Article  MathSciNet  Google Scholar 

  41. Kovalev, A.A., Kotlyar, V.V., Zaskanov, S.G., Porfirev, A.P.: Half Pearcey Laser beams. J. Opt. 17, 035604 (2015)

    Article  Google Scholar 

  42. Thom, R.: Structural Stability and Morphogenesis. Benjamin, Reading MA (1975)

    MATH  Google Scholar 

  43. Kravtsov, Y.A., Orlov, Y.I.: Caustics, catastrophes, and wave fields. Soviet Physics Uspekhi 26(12), 1038 (1983)

    Article  MathSciNet  Google Scholar 

  44. Kirkby, W., Mumford, J., O’Dell, D.H.J.: Quantum caustics and the hierarchy of light cones in quenched spin chains. Physical Review Research 1(3), 033135 (2019)

    Article  Google Scholar 

  45. Jurcevic, P., Lanyon, B.P., Hauke, P., Hempel, C., Zoller, P., Blatt, R., Roos, C.F.: Quasiparticle engineering and entanglement propagation in a quantum many-body system, Nature (London) 511, 202 (2014)

    Google Scholar 

  46. Tinkham, M.: Introduction to Superconductivity. Courier Corporation (2004)

    Google Scholar 

  47. Berry, M.V.: Singularities in waves and rays. Physics of Defects 35, 453–543 (1981)

    Google Scholar 

  48. Lieb, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251 (1972)

    Article  MathSciNet  Google Scholar 

  49. Calabrese, P., Cardy, J.: Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96(13), 136801 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

A.L. was supported by the Polish National Agency for Academic Exchange NAWA project: Program im. Iwanowskiej PPN/IWA/2018/1/00098 and supported by the NCN research project OPUS 12 no. UMO-2016/23/B/ST3/01714. I would like to thank the anonymous referee for giving valuable suggestions and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lattanzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lattanzi, A. (2021). The Pearcey Equation: From the Salpeter Relativistic Equation to Quasiparticles. In: Beghin, L., Mainardi, F., Garrappa, R. (eds) Nonlocal and Fractional Operators. SEMA SIMAI Springer Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-69236-0_10

Download citation

Publish with us

Policies and ethics