Skip to main content
Log in

Model of the Negative DC Corona Plasma: Comparison to the Positive DC Corona Plasma

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A numerical model of the negative DC corona plasma along a thin wire in dry air is presented. The electron number density and electric field are determined from solution of the one-dimensional coupled continuity equations of charge carriers and Maxwell's equation. The electron kinetic energy distribution is determined from the spatially homogeneous Boltzmann equation. A parametric study is conducted to examine the effects of linear current density (0.1–100 μA per cm of wire length), wire radius (10–1000 μm), and air temperature (293–800 K) on the distribution of electrons and the Townsend second ionization coefficient. The results are compared to those previously determined for the positive corona discharge. In the negative corona, energetic electrons are present beyond the ionization boundary and the number of electrons is an order of magnitude greater than in the positive corona. The number of electrons increases with increasing gas temperature. The electron energy distribution does not depend on discharge polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. G. Cottrell, U.S. Patent, 895,729 (1908).

    Google Scholar 

  2. F. G. Cottrell, J. Ind. and Eng. Chem. 3, 542(1911).

    Google Scholar 

  3. H. J. White, Industrial Electrostatic Precipitation, Addison-Wesley Publishing Company, Inc., 1963.

  4. A. D. Moore, Electrostatics and Its Applications, John Wiley & Sons, New York, 1973.

    Google Scholar 

  5. J. A. Cross, Electrostatics: Principles, Problems and Applications, Adam Hilger, Bristol, England, 1987.

    Google Scholar 

  6. A. P. Napartovich, Proceedings of the International Symposium on High Pressure Low Temperature Plasma Chemistry, Vol. 1 (H. Wagner, J. F. Behnke, and G. Babucke, eds.), Greifswald, Germany, pp. 122–128 (2000).

    Google Scholar 

  7. Y. Akishev, S. Kroepke, J. Behnisch, A. Hollander, A. Napartovich, and N. Trushkin, Proceedings of the International Symposium on High Pressure Low Temperature Plasma Chemistry, Vol. 2 (H. Wagner, J. F. Behnke, and G. Babucke, eds.), Greifswald, Germany, pp. 481–485 (2000).

    Google Scholar 

  8. M. L. Balmer, G. Fisher, and J. Hoard, Non-Thermal Plasma for Exhaust Emission Control: NO x , HC, and Particulates, Society of Automotive Engineers, Inc., Warrendale, PA, 1999.

    Google Scholar 

  9. T. Hammer, Contributions to Plasma Phys. 39, 441–462 (1999).

    Google Scholar 

  10. T. Hammer, Proceedings of the International Symposium on High Pressure Low Temperature Plasma Chemistry, Vol. 2 (H. Wagner, J. F. Behnke, and G. Babucke, eds.), Greifswald, Germany, pp. 234–241 (2000).

    Google Scholar 

  11. W. Manheimer, L. E. Sugiyama, and T. H. Stix, Plasma Science and the Environment, American Institute of Physics Press, Woodbury, New York, 1997.

    Google Scholar 

  12. B. M. Penetrante and S. E. Schultheis, Non-Thermal Plasma Techniques for Pollution Control Part A: Overview, Fundamentals and Supporting Technologies, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  13. B. M. Penetrante and S. E. Schultheis, Non-Thermal Plasma Techniques for Pollution Control Part B: Electron Beam and Electrical Discharge Processing, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  14. B. M. Penetrante, J. N. Bardsley, and M. C. Hsiao, Jpn. J. Appl. Phys. 36, 5007–5017 (1997).

    Google Scholar 

  15. R. G. Rice and A. Netzer, Handbook of Ozone Technology and Applications, Ann Arbor, Mich., 1982.

  16. B. Eliasson, M. Hirth, and U. Kogelschatz, J. Phys. D: Appl. Phys. 20, 1421–1437 (1987).

    Google Scholar 

  17. K. Boelter and J. H. Davidson, Aerosol Sci. and Technol. 27, 690–708 (1997).

    Google Scholar 

  18. A. S. Viner, P. A. Lawless, D. S. Ensor, and L. E. Sparks, IEEE Trans. Ind. Appl. 28, 504–512 (1992).

    Google Scholar 

  19. M. B. Awad and G. S. P. Castle, J. Air Pollu. Con. Assoc. 25, 369–374 (1975).

    Google Scholar 

  20. T. Ohkubo, S. Hamasaki, Y. Nomoto, J. S. Chang, and T. Adachi, IEEE Trans. Ind. Appl. 26, 542–549 (1990).

    Google Scholar 

  21. K. Nashimoto, J. Imaging Sci. 32, 205–210 (1988).

    Google Scholar 

  22. P. Cooperman, Trans. Amer. Inst. Elec. Eng. Part 1 79, 47–50 (1960).

    Google Scholar 

  23. G. Cooperman, IEEE Transactions on Industry Applications 1A-17, 236–239 (1981).

    Google Scholar 

  24. G. Leutert and B. Bohlen, Staub-Reinhalt. Luft 32, 27–37 (1972) (in English).

    Google Scholar 

  25. J. R. McDonald, W. B. Smith, H. W. Spencer III, and L. E. Sparks, J. Appl. Phys. 48, 2231–2243 (1977).

    Google Scholar 

  26. M. P. Sarma and W. Janischewskyj, Proc. IEE 116, 161–166 (1969).

    Google Scholar 

  27. E. U. Landers, Proc. IEE 125, 1069–1073 (1978).

    Google Scholar 

  28. J. Chen and J. H. Davidson, Plasma Chem. Plasma Process. 22, 199–224 (2002).

    Google Scholar 

  29. J. D. Cobine, Gaseous Conductors: Theory and Engineering Applications, Dover Publications, Inc., New York, 1958.

    Google Scholar 

  30. L. B. Loeb, Fundamental Processes of Electrical Discharge in Gases, John Wiley & Sons, Inc., New York, 1947.

    Google Scholar 

  31. L. B. Loeb, Electrical Coronas: Their Basic Physical Mechanisms, Berkeley, University of California Press, 1965.

    Google Scholar 

  32. R. Moprrow, Phys. Rev. A 32, 1799–1809 (1985).

    Google Scholar 

  33. G. N. Aleksandrov, Soviet Phys. Tech. Phys. 1714–1726 (1956).

  34. F. W. Peek, Dielectric Phenomena in High-Voltage Engineering, 3rd ed., McGraw-Hill, New York, 1929.

    Google Scholar 

  35. P. A. Lawless, K. J. McLean, L. E. Sparks, and G. H. Ramsey, J. Electrostatics 18, 199–217 (1986).

    Google Scholar 

  36. Y. Akishev, O. Goossens, T. Callebaut, C. Leys, A. Napartovich, and N. Trushkin, J. Phys. D: Appl. Phys. 34, 2875–2882 (2001).

    Google Scholar 

  37. G. W. Trichel, Phys. Rev. 54, 1078–1084 (1938).

    Google Scholar 

  38. K. J. McLean, P. A. Lawless, L. E. Sparks, and G. H. Ramsey, J. Electrostatics 18, 219–231 (1986).

    Google Scholar 

  39. J. H. Davidson and E. J. Shaughnessy, Experiments in Fluids 4, 17–26 (1986).

    Google Scholar 

  40. Y. P. Raizer, Gas Discharge Physics, Springer, New York, 1997.

    Google Scholar 

  41. E. U. Condon and H. Odishaw, Handbook of Physics, McGraw-Hill, New York, 1967.

    Google Scholar 

  42. C. Kentry, Phys. Rev. 44, 891–897 (1933).

    Google Scholar 

  43. K. Boelter, M.S. Thesis, University of Minnesota-Minneapolis (1996).

  44. J. B. Thomas and E. Wong, J. Appl. Phys. 29, 1226–1230 (1958).

    Google Scholar 

  45. I. A. Kossyi, A. Y. Kotinsky, A. A. Matveyev, and V. P. Silakkov, Plasma Sources Sci. Technol. 1, 207–220 (1992).

    Google Scholar 

  46. J. J. Lowke and R. Morrow, Pure Appl. Chem. 66, 1287–1294 (1994).

    Google Scholar 

  47. M. A. Harrison and R. Geballe, Phys. Rev. 91, 1–7 (1953).

    Google Scholar 

  48. H. Ryzko, Proc. Phys. Soc. 85, 1283–1295 (1965).

    Google Scholar 

  49. L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases, John Wiley & Sons, New York, 1974.

    Google Scholar 

  50. E. W. McDaniel and E. A. Mason, The Mobility and Diffusion of Ions in Gases, John Wiley & Sons, New York, 1973.

    Google Scholar 

  51. R. Morrow, J. Phys. D: Appl. Phys. 30, 3099–3114 (1997).

    Google Scholar 

  52. R. W. Evans and I. I. Inculet, IEEE Trans. Ind. Appl. IA-14, 523–525 (1978).

    Google Scholar 

  53. J. Chen and J. H. Davidson, Plasma Chem. Plasma Process. 22, 499–522 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Davidson, J.H. Model of the Negative DC Corona Plasma: Comparison to the Positive DC Corona Plasma. Plasma Chemistry and Plasma Processing 23, 83–102 (2003). https://doi.org/10.1023/A:1022468803203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022468803203

Navigation