Skip to main content
Log in

Testing species richness estimation methods using museum label data on the Danish Asilidae

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

Museum collections are treasure troves of biodiversity information thatcan potentially be used for species richness estimation. Using label data on theDanish Asilidae (Diptera), we test eight species richness estimation techniques(abundance-based coverage estimator (ACE), ICE, Chao1, Chao2, first and secondorder Jackknife, Bootstrap and MMMeans) by comparing the estimates to the numberof species likely to occur in Denmark based on distributional information,expert opinion, and a species–area curve. We are investigating which ofthe estimators are most suited for the task. Furthermore, through theuse of four different subsampling schemes we study which kind of label information isnecessary in order to apply these estimation procedures. The first and secondorder Jackknife estimators yield the most accurate estimate of the number ofcollectable species in Denmark, while ACE, Bootstrap and Chao1 only provideslight improvements over observed values. We find that all estimatorsunderestimate the true diversity of Danish Asilidae and speculate that thisperformance is due to a discrepancy between the total and the collectable faunain the region. Finally, we discuss the implications for species richnessestimation and emphasize that for most terrestrial arthropod taxa thesediscrepancies are of such a magnitude that estimated species richness values maybe dangerously low and of limited use in conservation decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson R.S. and Ashe J.S. 2000. Leaf litter inhabiting beetles as surrogates for establishing priorities for conservation of selected tropical montane cloud forests in Honduras, Central America (Coleoptera; Staphylinidae, Curculionidae). Biodiversity and Conservation 9: 617–653.

    Google Scholar 

  • Burnham K.P. and Overton W.S. 1978. Estimation of the size of a closed population when capture probabilities vary among animals. Biometrica 65: 623–633.

    Google Scholar 

  • Burnham K.P. and Overton W.S. 1979. Robust estimation of the size of a closed population when capture probabilities vary among animals. Ecology 60: 927–936.

    Google Scholar 

  • Carlton C.E. and Robison H.W. 1998. Diversity of litter-dwelling beetles in the Ouachita Highlands of Arkansas, USA (Insecta: Coleoptera). Biodiversity and Conservation 7: 1589–1605.

    Google Scholar 

  • Chandler P. (ed.) 1998. Checklists of Insects of the British Isles (New Series), Part 1: Diptera. Royal Entomological Society of London, London.

    Google Scholar 

  • Chao A. 1984. Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11: 265–270.

    Google Scholar 

  • Chao A. 1987. Estimating the population size for capture–recapture data with unequal cathability. Biometrics 43: 783–791.

    Google Scholar 

  • Chao A., Ma M.-C. and Yang M.C.K. 1993. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 80: 193–201.

    Google Scholar 

  • Chazdon R.L., Colwell R.K., Denslow J.S. and Guariguata M.R. 1998. Statistical methods for estimating species richness of woody regeneration in primary and secondary rainforests of northeastern Costa Rica. In: Dallmeier F. and Comiskey J.A. (eds), Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and Old World Case Studies. Parthenon Publishing Group, Paris, pp. 285–309.

    Google Scholar 

  • Coddington J.A., Young L.H. and Coyle F.A. 1996. Estimating spider species richness in a southern Appalachian cove hardwood forest. The Journal of Arachnology 24: 111–128.

    Google Scholar 

  • Colwell R.K. 1997. EstimateS v. 5.01. Available at: http://viceroy.eeb.uconn.edu /EstimateS

  • Colwell R.K. and Coddington J.A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society (Series B) 345: 101–118.

    Google Scholar 

  • Condit R., Hubbel S.T., Lafrankie J.V., Sukumar R., Manokaran N., Foster R.B. et al. 1996. Species–area and species–individual relationships for tropical trees: a comparison of three 50-ha plots. Jounal of Ecology 84: 549–562.

    Google Scholar 

  • Enghoff H. and Nielsen E.S. 1977. Et nyt grundkort til brug for faunistiske undersoegelser i Danmark, baseret paa UTM-koordinatsystemet. Entomologiske Meddelelser 45: 65–74.

    Google Scholar 

  • Fagan W.F. and Kareiva P.M. 1997. Using compiled species lists to make biodiversity comparisons among regions: a test case using Oregon butterflies. Biological Conservation 80: 249–259.

    Google Scholar 

  • Funk V.A., Zermoglio M.F. and Nasir N. 1999. Testing the use of specimen collection data and GIS in biodiversity exploration and conservation decision making in Guyana. Biodiversity and Conservation 8: 727–751.

    Google Scholar 

  • Gotelli N.J. and Colwell R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379–391.

    Google Scholar 

  • Grootaert P., De Bruyn L. and De Meyer M. (eds) 1991. Catalogue of the Diptera of Belgium. Studiedocumenten van het K.I.B.N Vol. 70. pp. 1–338.

  • Hackman W. 1980a. A check-list of the Finnish Diptera. I. Nematocera and Brachycera (s. str.). Notulae Entomologicae 60: 17–48.

    Google Scholar 

  • Hackman W. 1980b. A check-list of the Finnish Diptera. II. Cyclorrhapha. Notulae Entomologicae 60: 117–162.

    Google Scholar 

  • Heltshe J.F. and Forrester N.E. 1983. Estimating species richness using the jackknife procedure. Biometrics 39: 1–12.

    Google Scholar 

  • Heyer W.R., Coddington J.A., Kress J.W., Acevedo P., Cole D., Erwin T.L. et al. 1999. Amazonian biotic data and conservation decisions. Ciencia e Cultura 51: 372–384.

    Google Scholar 

  • Lee S.-M. and Chao A. 1994. Estimating population size via sample coverage for closed capture– recapture models. Biometrics 50: 88–97.

    Google Scholar 

  • Léon-Cortés J.L., Soberón-Mainero J. and Llorente-Bousquets J. 1998. Assessing completeness of Mexican sphinx moth inventories through species accumulation curves. Diversity and Distributions 4: 37–44.

    Google Scholar 

  • Longino J., Colwell R.K. and Coddington J.A. 2002. The ant fauna of a tropical rainforest: estimating species richness three different ways. Ecology 83: 689–702.

    Google Scholar 

  • Lyneborg L. 1965. Tovinger IV. Humlefluer, Stiletfluer, Rovfluer m.fl. Danmarks Fauna Vol. 70, Dansk Naturhistorisk Forening. GEC Gads Forlag, Copenhagen.

    Google Scholar 

  • MacArthur R.H. and Wilson E.O. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, New Jersey, 203 pp.

    Google Scholar 

  • Novotný V. and Basset Y. 2000. Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos 89: 564–572.

    Google Scholar 

  • Palmer M.W. 1990. The estimation of species richness by extrapolation. Ecology 71: 1195–1198.

    Google Scholar 

  • Petersen F.T. and Meier R. 2001. A Preliminary List of the Diptera of Denmark. Steenstrupia 26: 119–276.

    Google Scholar 

  • Petersen F.T. and Meier R. 2003. Testing species-richness estimation methods on single-sample collection data using the Danish Diptera. Biodiversity and Conservation 12: 667–686.

    Google Scholar 

  • Ponder W.F., Carter G.A., Flemons P. and Chapman R.R. 2001. Evaluation of museum collection data for use in biodiversity assessment. Conservation Biology 15: 648–657.

    Google Scholar 

  • Poulin R. 1998. Comparison of three estimators of species richness in parasite component communities. Journal of Parasitology 84: 485–490.

    Google Scholar 

  • Raaijmakers J.G.W. 1987. Stastistical analysis of the Michaelis–Menten equation. Biometrics 40: 793–803.

    Google Scholar 

  • Smith E.P. and van Belle G. 1984. Nonparametric estimation of species richness. Biometrics 40: 119–129.

    Google Scholar 

  • Soberón J.M., Llorente J.B. and Oñate L. 2000. The use of specimen-label databases for conservation purposes: an example using Mexican papilionid and pierid butterflies. Biodiversity and Conservation 9: 1441–1466.

    Google Scholar 

  • Soós A. and Papp L. (eds) 1988. Catalogue of Palaearctic Diptera Vol. 5. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Walther B.A. and Morand S. 1998. Comparative performance of species richness estimation methods. Parasitology 116: 395–405.

    Google Scholar 

  • Walther B.A. and Martin J. 2001. Species richness estimation of bird communities: how to control for sampling effort? Parasitology 143: 413–419.

    Google Scholar 

  • Weinberg M., Bächli G. and Burckhardt D. (eds) 1995. Insecta Helvetica Fauna,Vol. 11. Diptera Asilidae. Schweizerischen Entomologischen Gesellschaft, Zurich, Switzerland.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, F.T., Meier, R. & Larsen, M.N. Testing species richness estimation methods using museum label data on the Danish Asilidae. Biodiversity and Conservation 12, 687–701 (2003). https://doi.org/10.1023/A:1022464710930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022464710930

Navigation