Skip to main content

Using Bayesian Inference to Validate Plant Community Assemblages and Determine Indicator Species

  • Conference paper
  • First Online:
Modeling, Dynamics, Optimization and Bioeconomics II (DGS 2014)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 195))

Included in the following conference series:

Abstract

Recently, we described changes in plant community composition along gradients of anthropogenic disturbance, using a multinomial distribution in a Bayesian framework. Species were organized into categories (e.g. endemic, native, naturalized, invasive) and the proportions of each category in each community were represented by a multinomial vector. We now extend the use of the multinomial distribution to represent all the species in a community, individually, and use this approach to (i) validate plant community assemblages according to their specific composition, and (ii) determine indicator species for each community assemblage. Communities were assembled according to different models: null (all together); saturated (all separated); semi-saturated (only community replicates together); random (random assemblages); gradient (communities assembled in types along an ecological gradient). The models were calculated by using WinBugs and model fit was evaluated using Deviance Information Criterion (DIC). After the best community assemblage was found, we used Bayes rule to estimate the probability of a community, given the presence of a species, and compared the resulting indicator species with those determined by using conventional indicator values (IndVal). Both community assemblage and indicator species analysis gave good results when using two comprehensive plant community data sets for the Azores, i.e., a gradient of anthropogenic disturbance and an altitude gradient. Our method allows to (i) statistically validate plant community assemblages; and (ii) incorporate the prevalence of a plant community in the calculations pertaining to indicator species analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clements, F.E.: Nature and structure of the climax. J. Ecol. 24, 252–284 (1937)

    Article  Google Scholar 

  2. Gleason, H.A.: The individualistic concept of the plant association. Bull. Torrey Botanical Club 53, 7–26 (1926)

    Article  Google Scholar 

  3. Gurevitch, J., Scheiner, S.M., Fox, G.A.: The Ecology of Plants. Sinauer Associates Inc Publishers, Sunderland (2002)

    Google Scholar 

  4. Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M., Gonzalez, A.: The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004)

    Article  Google Scholar 

  5. Borcard, D., Gillet, F., Legendre, P.: Numerical Ecology with R. Springer, New York (2011). 306 pp

    Book  MATH  Google Scholar 

  6. Mouillot, D., Villger, S., Scherer-Lorenzen, M., Mason, N.W.H.: Functional structure of biological communities predicts ecosystem multifunctionality. PLoS ONE 6(3), e17476 (2011). doi:10.1371/journal.pone.0017476

    Article  Google Scholar 

  7. Marcelino, J.A.P., Silva, L., Garcia, P.V., Weber, R., Soares, A.O.: Using species spectra to evaluate plant community conservation value along a gradient of anthropogenic disturbance. Environ. Monit. Assess. 185, 6221–6233 (2013)

    Article  Google Scholar 

  8. Paoletti, M.G.: Using bioindicators based on biodiversity to assess landscape sustainability. Agric. Ecosyst. Environ. 74, 1–18 (1999)

    Article  Google Scholar 

  9. Niemi, G.J., McDonald, M.E.: Application of ecological indicators. Annu. Rev. Ecol. Evol. Syst. 35, 89–111 (2004)

    Article  Google Scholar 

  10. Hodkinson, I.D., Jackson, J.K.: Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ. Manag. 35, 649–666 (2005)

    Article  Google Scholar 

  11. McGeoch, M.A.: Bioindicators. Encyclopedia of Environmetrics. Wiley, London (2006)

    Book  Google Scholar 

  12. Muramoto, J., Gliessman, S.R.: Use of bioindicators for assessing sustainability of farming practices. In: Pimentel, D. (ed.) Encyclopedia of Pest Management, pp. 37–41. Marcel Dekker, Taylor & Francis Group, Boca Raton, FL (2006)

    Google Scholar 

  13. Odland, A.: Interpretation of altitudinal gradients in South Central Norway based on vascular plants as environmental indicators. Ecol. Indic. 9, 409–421 (2009)

    Article  Google Scholar 

  14. Nordén, B., Paltto, H., Gtmark, F., Wallin, K.: Indicators of biodiversity, what do they indicate? - Lessons for conservation of cryptogams in oak-rich forest. Biol. Conserv. 135, 369–379 (2007)

    Article  Google Scholar 

  15. Billeter, R., Liira, J., Bailey, D., et al.: Indicators for biodiversity in agricultural landscapes: a pan European study. J. Appl. Ecol. 45, 141–50 (2008)

    Article  Google Scholar 

  16. Marignani, M., Vico, E., Maccherini, S.: Performance of indicators and the effect of grain size in the discrimination of plant communities for restoration purposes. Community Ecol. 9, 201–206 (2008)

    Article  Google Scholar 

  17. Winter, S.: Forest naturalness assessment as a component of biodiversity monitoring and conservation management. Forestry 85, 293–304 (2012)

    Article  Google Scholar 

  18. Vilches, B., De Cáceres, M., Snchez-Mata, D., Gaviln, R.G.: Indicator species of broad-leaved oak forests in the eastern Iberian Peninsula. Ecol. Indic. 26, 44–48 (2013)

    Article  Google Scholar 

  19. De Cáceres, M., Legendre, P.: Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009)

    Article  Google Scholar 

  20. De Cáceres, M., Legendre, P., Wiser, S.K., Brotons, L.: Using species combinations in indicator value analyses. Methods Ecol. Evol. 3, 973–982 (2012)

    Article  Google Scholar 

  21. Urban, N.A., Swihart, R.K., Malloy, M.C., Dunning, J.B.: Improving selection of indicator species when detection is imperfect. Ecol. Indic. 15, 188–197 (2012)

    Article  Google Scholar 

  22. Dufrene, M., Legendre, P.: Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997)

    Google Scholar 

  23. Queiroz, R.E., Ventura, M.A., Silva, L.: Plant diversity in hiking trails crossing Natura 2000 areas in the Azores: implications for tourism and nature conservation. Biodivers. Conserv. 23, 1347–1365 (2014)

    Article  Google Scholar 

  24. Prestes, A., Magalhes, B., Xavier, E., Silva, L.: Changes in plant community composition along an altitudinal gradient on a coastal protected area in the Azores: a Bayesian analysis. Silva Lusit. special number, 91–114 (2014)

    Google Scholar 

  25. Marcelino, J.A.P., Weber, R., Silva, L., Garcia, P.V., Soares, A.O.: Expedient metrics to describe plant community change across gradients of anthropogenic influence. Environ. Manag. 54, 1121 (2014). doi:10.1007/s00267-014-0321-z

    Article  Google Scholar 

  26. McCarthy, M.A.: Bayesian Methods for Ecology. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  27. King, R., Morgan, B.J.T., Gimenez, O., Brooks, S.P.: Bayesian Analysis for Population Ecology. Chapman & Hall, Boca Raton (2010)

    Google Scholar 

  28. Boender, C.G.E.: Rinnooy, Kan, A. H. G.: A multinomial Bayesian approach to the estimation of population and vocabulary size. Biometrika 74, 849–856 (1987)

    Google Scholar 

  29. Vasko, K., Toonen, H.T.T., Korhola, A.: A Bayesian multinomial Gaussian response model for organism-based environmental reconstruction. J. Paleolimnol. 24, 243–250 (2000)

    Article  Google Scholar 

  30. Griffiths, T.L., Tenenbaum, J.B.: Using vocabulary knowledge in Bayesian multinomial estimation. Adv. Neural Inf. Process. Syst. 14, 1385–1392 (2002)

    Google Scholar 

  31. Kazembe, L., Namangale, J.: A Bayesian multinomial model to analyse spatial patterns of childhood co-morbidity in Malawi. Eur. J. Epidemiol. 22, 545–556 (2007)

    Article  Google Scholar 

  32. Calvo, E.: The competitive road to proportional representation. World Polit. 61, 254–295 (2009)

    Article  Google Scholar 

  33. Spiegehalter, D.J., Thomas, A., Best, N.G.: WinBUGS User Manual, Version 14. MCR Biostatistics Unit, Cambridge (2003)

    Google Scholar 

  34. Kéry, M.: Introduction to WinBUGS for Ecologists. A Bayesian Approach to Regression, ANOVA, Mixed Models and Related Analyses. Academic Press, Burlington (2010)

    Google Scholar 

  35. Pritchard, J.K., Stephens, M., Donnelly, P.: Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000)

    Google Scholar 

  36. Huelsenbeck, J.P., Ronquist, F.: MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755 (2001)

    Article  Google Scholar 

  37. Spiegehalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Soc.: Ser. B 64, 583–639 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sturtz, S., Ligges, U., Gelman, A.: R2WinBUGS: a package for running WinBUGS from R. J. Stat. Softw. 12, 1–16 (2005)

    Article  Google Scholar 

  39. Gu, Z., Gu, L., Eils, R., Schlesner, M., Brors, B.: Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014)

    Article  Google Scholar 

  40. De Cáceres, M., Jansen, F.: Package indicspecies. Studying the statistical relationship between species and groups of sites (2014) CRAN. http://cran.r-project.org/web/packages/indicspecies/indicspecies.pdf. 15 Oct 2014

  41. Silva, L.: Exotic Woodland In: Cardoso P., Gaspar C., Borges, P.A.V., Gabriel, R., Amorim, I.R., Martins, A.F., Maduro-Dias, F., Porteiro,J.M., Silva, L., Pereira, F. (eds.) Azores – a Natural Portrait/Açores – Um Retrato Natural, pp. 146–151. Veraçor, Ponta Delgada (2009)

    Google Scholar 

  42. Lourenço, P., Medeiros, V., Gil, A., Silva, L.: Distribution, habitat and biomass of Pittosporum undulatum, the most important woody plant invader in the Azores Archipelago. For. Ecol. Manag. 262, 178–187 (2011)

    Article  Google Scholar 

  43. Sjögren, E.: Recent changes in the vascular flora and vegetation of the Azores islands. Memórias da Sociedade Broteriana 22, 1–453 (1973)

    Google Scholar 

  44. Dias, E., Elias, R.B., Melo, C., Mendes, C.: Biologia e ecologia das florestas das ilhas. In: Silva, J.S. (ed.) Açores – Árvores e florestas de Portugal, Açores e Madeira. A floresta das ilhas, pp. 51–80, Público Comunicação Social, SA e Fundação Luso–Americana para o Desenvolvimento (2007)

    Google Scholar 

  45. Schäfer, H.: Chorology and diversity of the Azorean flora. Dissertationes Botanicae 374, 1–130 (2003)

    Google Scholar 

  46. Oliveira, J.N.B.: A pastagem permanente da ilha de São Miguel (Açores): Estudo fitossociológico, fitoecológico e primeira abordagem do ponto de vista agronómico. Dissertação de Doutoramento, Universidade dos Açores, Ponta Delgada, 366 pp. (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Silva, L., Le Jean, F., Marcelino, J., Soares, A.O. (2017). Using Bayesian Inference to Validate Plant Community Assemblages and Determine Indicator Species. In: Pinto, A., Zilberman, D. (eds) Modeling, Dynamics, Optimization and Bioeconomics II. DGS 2014. Springer Proceedings in Mathematics & Statistics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-55236-1_21

Download citation

Publish with us

Policies and ethics