Skip to main content
Log in

Neuronal Death: Is There a Role for Astrocytes?

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes are ubiquitous in the brain and have multiple functions. It is becoming increasingly clear that they play an important role in monitoring the neuromicroenvironment in CNS and in information processing or signaling in the nervous system in normal conditions and respond to CNS injuries in a gradual and varied way. It is still debated whether such reactions are beneficial or detrimental. It was believed that reactive astrogliosis observed in most neurological disorders may regulate the removal of toxic compounds produced by damaged neurons and support neuronal growth by releasing trophic factors. However it was also suggested that astrocytes contribute to a decline of neurologic function, for example by accumulation and release of excitotoxic aminoacids after ischemia and oxidative stress, formation of epileptogenic scars in response to CNS injury and metabolism of protoxins to potent toxins. In a number of metabolic diseases astrocytes, not neurons, may be the primary target. The astrocyte's role in normal and pathological conditions will be discussed in the light of recent information about their metabolism, receptor distribution and release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mucke, L., and Eddleston, M. 1993. Astrocytes in infectious and immunemediated diseases of the central nervous system. FASEB J. 7:1226–1232.

    Google Scholar 

  2. Giulian, D. 1993. Reactive glia as rivals in regulating neuronal survival. Glia 7:102–110.

    Google Scholar 

  3. Ferrara, N., Ousley, F., and Gospodarowicz, D. 1988. Bovine brain astrocytes express basic fibroblast growth factor, a neurotropic and angiogenic mitogen. Brain. Res. 462:223–232.

    Google Scholar 

  4. Varon, S., Manthorpe, M., and Adler, R. 1979. Cholinergic neuronotrophic factors: I. Survival, neurite outgrowth and choline acetyltransferase activity in monolayer cultures from chick embryo ciliary ganglia. Brain. Res. 173:29–45.

    Google Scholar 

  5. Visentin, M., Salmona, M., and Tacconi, M. T. 1995. Reye's and Reye-like syndromes drug-related diseases? (causative agents, etiology, pathogenesis and therapeutic approaches). Drug Metab. Rev. 27:517–539.

    Google Scholar 

  6. Muller, C. M. 1992. A role for glial cells in activity-dependent central nervous system plasticity? Review and hypothesis. Int. Rev. Neurobiol. 34:215–281.

    Google Scholar 

  7. Barres, B. A., Chun, L. L. Y., and Corey, D. P. 1990. Ion channels in vertebrate glia. Annu. Rev. Neurosci. 13:441–474.

    Google Scholar 

  8. Glowinski, J., Marin, P., Tence, M., Stella, N., Giaume, C., and Premont, J. 1994. Glial receptors and their intervention in astrocyto-astrocytic and astrocyto-neuronal interactions. Glia 8:202–208.

    Google Scholar 

  9. Chiu, S. Y., and Kriegler, S. 1994. Neurotransmitter-mediated signaling between axons and glial cells. Glia 11:191–200.

    Google Scholar 

  10. Norenberg, M. D. 1994. Astrocyte responses to CNS injury. J. Neuropathol. Exp. Neurol. 53:213–220.

    Google Scholar 

  11. Landis, D. M. D. 1994. The early reactions of non-neuronal cells to brain injury. Annu. Rev. Neurosci. 17:133–151.

    Google Scholar 

  12. Schipper, H. M. 1996. Astrocytes, brain aging, and neurodegeneration. Neurobiol. Aging 17:467–480.

    Google Scholar 

  13. Eddleston, M., and Mucke, L 1993. Molecular profile of reactive astrocytes-implications for their role in neurologic disease. Neuroscience 54:15–36.

    Google Scholar 

  14. Vernadakis, A. 1988. Neuron-glia Interrelations. Int. Rev. Neurobiol. 30:149–224.

    Google Scholar 

  15. Wilkins, G. P., Marriott, D. R., and Cholewiski, A. J. 1990. Astrocyte heterogeneity. Trends Neurosci. 13:43–46.

    Google Scholar 

  16. Giaume, C., Fromaget, C., el-Aoumari, A., Cordier, J., Glowinski, J., and Gros, D. 1991. Gap junctions in cultured astrocytes: single channel current and characterization of channel-forming protein. Neuron 6:133–143.

    Google Scholar 

  17. Giaume, C., Marin, P., Cordier, J., and Premont, J. 1991. Adrenergic regulation of intercellular communications between cultured striatal astrocytes from the mouse. Proc. Natl. Acad. Sci. USA 88:5577–5581.

    Google Scholar 

  18. DeVries, S. H., and Schwartz, E. A. 1989. Modulation of an electrical synapse between solitary path of catfish horizontal cells by dopamine and second messengers. J. Physiol, Lond. 414:351–375.

    Google Scholar 

  19. Muller, T., and Kettenmann, H. 1995. Physiology of Bergmann glial cells. Int. Rev. Neurobiol. 38:341–359.

    Google Scholar 

  20. Rosenman, S. J., Shrikant, P., Dubb, L., Benveniste, E. N., and Ransohoff, R. M. 1995. Cytokine-induced expression of vascular cell adhesion molecule-1 (VCAM-1) by astrocytes and astrocytoma cell lines. J. Immunol. 154:1888–1899.

    Google Scholar 

  21. Spector, R. 1988. Fatty acid transport through the blood-brain barrier. J. Neurochem. 50:639–643.

    Google Scholar 

  22. Magret, V., Elkhalil, L., Nazih-Sanderson, F., Martin, F., Bourre, J. M., Fruchart, J. C., and Delbart, C. 1996. Entry of polyunsaturated fatty acids into the brain: evidence that high-density lipoprotein-induced methylation of phosphatidylethanolamine and phospholipase A2 are involved. Biochem. J. 316:805–811.

    Google Scholar 

  23. Moore, S. A., Yoder, E., Murphy, S., Dutton, G. R., and Spector, A. A. 1991. Astrocytes, not neurons, produce docosahexaenoic acid (22:6w-3) and arachidonic acid (20:4w-6). J. Neurochem. 56:518–524.

    Google Scholar 

  24. Varon, S. S., and Somjen, G. G. 1979. Neuron-glia interactions. Neurosci. Res. Progr. Bull. 17:1–239.

    Google Scholar 

  25. Walz, W., and Hertz, L. 1983. Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Progr. Neurobiol. 20:133–183.

    Google Scholar 

  26. Norenberg, M. D., Hertz, L., and Shousboe, A. (eds) 1988: The biochemical pathology of astrocytes, NY, Alan R. Liss.

    Google Scholar 

  27. Lee, S. C., Liu, W., Dickson, D. W., Brosnan, C. F., and Berman, J. W. 1993. Cytokine production by human fetal microglia and astrocytes. J. Immunol. 150:2659–2667.

    Google Scholar 

  28. Yu, N., Maciejewski-Lenoir, D., Bloom, F. E., and Magistretti, P. J. 1995. Tumor necrosis factor alfa and interleukin-1 alfa enhance glucose utilization by astrocytes: involvement of phospholipase A2. Mol. Pharmacol. 48:550–558.

    Google Scholar 

  29. Simmons, M. L., and Murphy, S. 1992. Induction of nitric oxide synthase in glial cells. J. Neurochem. 59:897–905.

    Google Scholar 

  30. Kugler, P., and Drenckhahn, D. 1996. Astrocytes and Bergmann glia as an important site of nitric oxide synthase I. Glia 16:165–173.

    Google Scholar 

  31. Hu, S., Sheng, W. S., Peterson, P. K., and Chao, C. C. 1995. Differential regulation by cytokines of human astrocyte nitric oxide production. Glia 15:491–494.

    Google Scholar 

  32. Yu, N., Martin, J-L., Stella, N., and Magistretti, P. J. 1993. Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes. Proc. Natl. Acad. Sci. USA 90:4042–4046.

    Google Scholar 

  33. Sorg, O., and Magistretti, P. J. 1991. Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain. Res. 563:227–233.

    Google Scholar 

  34. Sorg, O., and Magistretti, P. J. 1992. Vasoactive intestinal peptide and noradrenaline exert long-term control on glycogen levels in astrocytes: blockade by protein synthesis inhibition. J. Neurosci. 12:4923–4931.

    Google Scholar 

  35. Pellerin, L., and Magistretti, P. J. 1994. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. USA 91:10625–10629.

    Google Scholar 

  36. Sorg, O., Pellerin, L., Stolz, M., Beggah, S., and Magistretti, P. J. 1995. Adenosine triphosphate and arachidonic acid stimulate glycogenolysis in primary cultures of mouse cerebral cortex astrocytes. Neurosci. Lett. 188:109–112.

    Google Scholar 

  37. Dringen, R., Gebhardt, R., and Hamprecht, B. 1993. Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain. Res. 623:208–214.

    Google Scholar 

  38. Auestad, N., Korsak, R. A., Morrow, J. W., and Edmond, J. 1991. Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J. Neurochem. 56:1376–1386.

    Google Scholar 

  39. Murphy, M. G., Jollimore, C., Crocker, J. F. S., and Her, H. 1992. Beta-oxidation of [1-14C] palmitic acid by mouse astrocytes in primary culture: effects of agents implicated in the encephalopathy of Reye's syndrome. J. Neurosci. Res. 33:445–454.

    Google Scholar 

  40. Warshaw, J. B., and Terry, M. L. 1976. Cellular energy metabolism during fetal development. VI Fatty acid oxidation by developing brain. Dev. Biol. 52:161–166.

    Google Scholar 

  41. Bossi, E., Zuppinger, K., Siegrist, H. P., Wiesmann, U., and Herschkowitz, N. 1982. Age-dependent utilization of D-beta-OH butyrate and oleic acid as glucose substitutes by neonatal mouse brain cell cultures. Pediatr. Res 16:579–582.

    Google Scholar 

  42. Edmond, J., Robbins, R. A., Bergstrom, J. D., Cole, R. A., and DeVellis, J. 1987. Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes and oligodendrocytes from developing brain in primary culture. J. Neurosci. Res 18:551–561.

    Google Scholar 

  43. Flynn, C. J., and Wecker, L. 1987. Concomitant increases in the levels of choline free fatty acids in rat brain: evidence supporting the seizure-induced hydrolysis of phosphatidylcholine. J. Neurochem. 48:1178–1184.

    Google Scholar 

  44. Chan, P. H., Longar, S., and Fishman, R. A. 1983. Phospholipid degeneration and edema development in cold-injured rat brain. Brain. Res. 277:329–337.

    Google Scholar 

  45. Stella, N., Tence, M., Glowinski, J., and Premont, J. 1994. Glutamate-evoked release of arachidonic acid from mouse brain astrocytes. J. Neurosci. 14:568–575.

    Google Scholar 

  46. Kimelberg, H. K., Goderie, S. K., Higman, S., Pang, S., and Waniewski, R. A. 1990. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J. Neurosci. 10:1583–1591.

    Google Scholar 

  47. Mucke, L., Oldstone, M. B. A., Morris, J. C., and Nerenberg, M. I. 1991. Rapid activation of astrocyte specific expression of GFAP-lacZ transgene by focal injury. New Biol. 3:465–474.

    Google Scholar 

  48. Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., and Nicotera, P. 1995. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 15:961–973.

    Google Scholar 

  49. Barker, J. E., Bolanos, J. P., Land, J. M., B. Clark, J., and Heales, S. J. R. 1996. Glutathione protects astrocytes from peroxynitrite-mediated mitochondrial damage: implications for neuronal/astrocytic trafficking and neurodegeneration. Dev. Neurosci 18:391–396.

    Google Scholar 

  50. Bolanos, J. P., Heales, S. J. R., Land, J. M., and Clark, J. B. 1995. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J. Neurochem. 64:1965–1972.

    Google Scholar 

  51. Makar, T. K., Nedergaard, M., Preuss, A., Gelbard, A. S., Perumal, A. S., and Cooper, A. J. L. 1994. Vitamin E, ascorbate, glutathione, glutathione disulfide and enzymes of glutathione metabolism in culture of chick astrocytes and neurones: evidence that astrocytes play an important antioxidant role in antioxidative processes in the brain. J. Neurochem. 62:45–53.

    Google Scholar 

  52. Fukuda, K., Panter, S. S., Sharp, F. R., and Noble, L. J. 1995. Induction of heme oxygenase-1 (HO-1) after traumatic brain injury in the rat. Neurosci. Lett. 199:127–130.

    Google Scholar 

  53. Smith, G. M., Rutishauser, U., Silver, J., and Miller, M. H. 1990. Maturation of astrocytes in vitro alters the extent and molecular basis of neurite outgrowth. Dev. Biol. 138–2:377–390.

    Google Scholar 

  54. Tiveron, M. C., Barboni, E., Pliego-Rivero, F. B., Gormley, A. M., Seeley, P. J., Grosveld, F., and Morris, R. 1992. Selective inhibition of neurite outgrowth on mature astrocytes by Thy-1 glycoprotein. Nature 355(6362):745–748.

    Google Scholar 

  55. Rowe, P. C., Valle, D., and Brusilow, S. W. 1988. Inborn errors of metabolism in children referred with Reye's syndrome. A changing pattern. J. Am. Med. Assoc. 260:3167–70.

    Google Scholar 

  56. Green, A., and Hall, S. M. 1992. Investigation of metabolic disorders resembling Reye's syndrome. Arch. Dis. Child. 67:1313–1317.

    Google Scholar 

  57. Glasgow, J. F. T., and Moore, R. 1993. Reye's syndrome 30 year on. Br. Med. J. 307:950–951.

    Google Scholar 

  58. Tonsgard, J. H. 1985. Urinary dicarboxylic acids in Reye's syndrome. J. Pediatr. 107:79.

    Google Scholar 

  59. Olson, J. E., Holtzman D., Sankar R., Lawson C., and Rosenberg, R. 1989. Octanoic acid inhibits astrocyte volume control: implications for cerebral edema in Reye's syndrome. J. Neurochem. 52:1197–1202.

    Google Scholar 

  60. Shigenaga, M. K., Hagen, T. M., and Ames, B. N. 1994. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA 91:10771–10778.

    Google Scholar 

  61. Sohal, R. S., Ku H. H., Agarwal, S., Forster, M. J., and Lal H. 1994. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Aging. Dev. 74:121–133.

    Google Scholar 

  62. Connor, J. R., Menzles, S., St. Martin, S. M., and Mufson, E. J. 1990. Cellular distribution of transferrin, ferritin and iron in normal and aged human brains. J. Neurosci. 27:595–611.

    Google Scholar 

  63. Jellinger, P., Paulus, W., Grundke-Iqbal, I., Riederer, P., and Youdim, M. B. 1990. Brain iron and ferritin in Parkinson's and Alzheimer's disease. J. Neural. Trasm. Park. Dis. Dement. Sect. 2:327–340.

    Google Scholar 

  64. Saura, J., Luque, J. M., Cesura, A. M., Da Prada, M. D., Chan-Palay, V., Huber, G., Loffler, J., and Richards, J. G. 1994. Increased monoamine oxidate B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 62:15–30.

    Google Scholar 

  65. Wang, J., Lieberman, D., Tabubo, H., Finberg, J. P. M., Oldfield, E. H., and Bankiewicz, K. 1994. Effects of gliosis on dopamine metabolism in rat striatum. Brain. Res. 663:199–205.

    Google Scholar 

  66. Riederer, P., Sofie, E., Rausch, W. D., Schmidt, B., Reynold, G. P., Jellinger, K., and Youdim, M. B. H. 1989. Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brain. J. Neurochem. 52:515–520.

    Google Scholar 

  67. Youdim, M. B. H., Ben-Shachar, D., and Riederer, P. 1993. The possible role of iron in the etiopathology of Parkinson's disease. Mov. Disord. 8:1–12.

    Google Scholar 

  68. Nakamura, Y., Takeda, M., Suzuki, H., Hattori, H., Tada, K., Hariguchi, S., Hashimoto, S., and Nishimura, N. 1991. Abnormal distribution of cathepsins in the brain of patients with Alzheimer's disease. Neurosci. Lett. 13:195–198.

    Google Scholar 

  69. Topper, R., Gerhmann, J., Banati, R., Schwarz, M., Block, F., Noth, J., and Kreutzberg, G. W. 1995. Rapid appearance of beta-amyloid precursor protein immunoreactivity in glial cells following excitotoxic brain injury. Acta Neuropathol. Berl. 89:23–28.

    Google Scholar 

  70. Oropeza, R. L., Wekerle, H., and Werb, Z. 1987. Espression of apolipoprotein E by mouse brain astrocytes and its modulation by interferon-gamma. Brain. Res. 410:45–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tacconi, M.T. Neuronal Death: Is There a Role for Astrocytes?. Neurochem Res 23, 759–765 (1998). https://doi.org/10.1023/A:1022463527474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022463527474

Navigation