Skip to main content
Log in

Reactions of 2,7-Dimethyloxepin with Dimethyldioxirane and Methyl(trifluoromethyl)dioxirane: Ring Opening and Probable Observation of the Intermediate “2,3-Epoxyoxepin”

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The reactions of dimethyldioxirane (7) and methyl(trifluoromethyl)dioxirane (8) with 2,7-dimethyloxepin (4) both yielded Z,Z-3,5-octadiene-2,7-dione (Z,Z-6) as their initial stable products. This is the first published reaction of a dioxirane with an isolable pure oxepin. Reaction of the dienedione Z,Z-6 with one mole equivalent of either 7 or 8 yielded the corresponding monoepoxide. Treatment of this monoepoxide with another equivalent of 8 yielded the corresponding diepoxides (probably meso and R,S). The suggestion of Murray and co-workers that dioxiranes may model some of the reactivities of monooxygenases and their rapid epoxidations of alkenes under neutral conditions at low temperatures suggested their use. Our initial attempts to directly observe the putative intermediate 1,3-dimethyl-2,8-dioxabicyclo-[5.1.0]octa-3,5-diene (“2,7-dimethyl-2,3-oxepin” (2)] at low temperatures (ca. −60°C) yielded promising but inconclusive results when dimethyldioxirane (7) was employed. The epoxidation reaction was sufficiently slow that it only occurred measurably above −30°C, a temperature at which thermal ring opening to the dienedione is competitive. Initial reactions with the much more reactive methyl)trifluoromethyl)dioxirane (8) led to immediate ring opening at temperatures as low as −80°C. Since 8 is known to isomerize to methyl trifluoroacetate and since water is present, a trace of trifluoroacetic acid was suspected of catalyzing the ring opening of 2. Thus, inclusion of either suspended Na2HPO4 or miscible 2,6-di-t-butylpyridine at −80°C yielded an intermediate stable up to ca. 0°C, which is likely to be the 2,3-epoxyoxepin 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Williams, R. T. Detoxification Mechanisms, 2nd ed.; Wiley-Interscience: New York, 1959, p. 189.

    Google Scholar 

  2. Tomida, I.; Nakajima, M. The chemistry of 3,5-cyclohexadiene-1,2-diol VI. Metabolism of the glycols and muconic dialdehyde. Z. Physiol. Chem. 1960, 318, 171–178.

    Google Scholar 

  3. Goldstein, B. D.; Witz, G.; Javid, J.; Amorusa, M.; Rossman, T.; Wolder, B. Muconaldehyde, a potential toxic intermediate of benzene metabolism, in Biological Reactive Intermediates, vol. 2, part A; R. Snyder, V. V. Parke, J. J. Kocsis, D. Jallow, G. G. Gibson, and C. M. Witmer, eds.; Plenum: New York, 1982, pp. 331–339.

    Google Scholar 

  4. Latriano, L.; Goldstein, B. D.; Witz, G. Formation of muconaldehyde, an open-ring metabolite of benzene, in mouse liver microsomes: An additional pathway for toxic metabolites. Proc. Natl. Acad. Sci. USA 1986, 83, 8356–8360.

    PubMed  Google Scholar 

  5. Goldstein, B. D.; Witz, G. Benzene, in Critical Reviews of Environmental Toxicants—Human Exposures and Their Health Effects, M. Lippmann, ed.; Van Nostrand: New York, 1991, chap. 3.

    Google Scholar 

  6. Davies, S. G.; Whitham, G. H. Benzene oxide-oxepin oxidation to muconaldehyde. J. Chem. Soc., Perkin Trans. 1977, 1, 1346–1347.

    Google Scholar 

  7. Greenberg, A.; Bock, C. W.; George, P.; Glusker, J. P. Energetics of the metabolic production of E,E-muconaldehyde from benzene via the intermediates 2,3-epoxyoxepin and (Z,Z)-and (E,Z)-muconaldehyde: Ab initio molecular orbital calculations. Chem. Res. Toxicol. 1993, 6, 701–710.

    PubMed  Google Scholar 

  8. George, P.; Bock, C. W.; Glusker, J. P.; Greenberg, A.; Gallagher, J. D. Thermal rearrangements of bicyclo[5.1.0]octa-2,4-diene and its 8-oxa, 6-oxa, and 6,8-dioxa derivatives: An ab initio molecular orbital study. J. Org. Chem. 1995, 60, 4385–4394.

    Google Scholar 

  9. Klotz, B.; Becker, K. H.; Golding, B. T. Atmospheric chemistry of benzene oxide/oxepin. J. Chem. Soc., Faraday Trans. 1997, 93, 1507–1516.

    Google Scholar 

  10. Jeyaraman, R.; Murray, R. W. Production of arene oxides by the caroate-acetone system (dimethyldioxirane). J. Am. Chem. Soc. 1984, 106, 2462–2463.

    Google Scholar 

  11. Murray, R. W.; Jeyaraman, R. Dioxiranes: Synthesis and reactions of methyldioxiranes. J. Org. Chem. 1985, 50, 2847–2853.

    Google Scholar 

  12. Murray, R. W. Dioxiranes. Chem. Rev. 1989, 89, 1187–1201.

    Google Scholar 

  13. Adam, W.; Curci, R.; Edwards, J. O. Dioxiranes: A new class of powerful oxidants. Acc. Chem. Res. 1989, 22, 205–211.

    Google Scholar 

  14. Mello, R.; Ciminale, F.; Fiorentino, M.; Fusco, C.; Prencipe, T.; Curci, R. Oxidation by methyl(trifluoromethyl)dioxirane. 4. Oxyfunctionalization of aromatic hydrocarbons. Tetrahedron Lett. 1990, 31, 6097–6100.

    Google Scholar 

  15. Vogel, E.; Gunther, H. Benzene oxide-oxepin valence tautomerism. Angew. Chem. Int. Ed. Engl. 1967, 6, 385–401.

    Google Scholar 

  16. Murray, R. W.; Singh, M. Activation of PAH by ozone derived oxidants: Results using fly ash as particulate. Polycycl. Arom. Cmpds. 1997, 12, 51–60.

    Google Scholar 

  17. Jerina, D. M.; Daly, J. W.; Witkop, B.; Zaltsman-Nirenberg, P.; Udenfriend, S. The role of arene oxide-oxepin systems in the metabolism of aromatic substrates. III. Formation of 1,2-na-phthalene oxide from naphthalene by liver microsomes. J. Am. Chem. Soc. 1968, 90, 6525–6527.

    PubMed  Google Scholar 

  18. Jerina, D. M.; Daly, J. W. Arene oxides: A new aspect of drug metabolism. Science 1974, 185, 573–582.

    PubMed  Google Scholar 

  19. Jerina, D. M.; Yagi, H.; Daly, J. W. Arene oxides-oxepins. Heterocycles 1976, 1, 267–326.

    Google Scholar 

  20. Rastetter, W. H. sym-Oxepin oxide. J. Am. Chem. Soc. 1976, 98, 6350–6353.

    PubMed  Google Scholar 

  21. The E r values for 4,5-epoxyoxepin (9) are: 6–31G*//6–31G*: −380.32237 au; MP2/6–31G*//6–31G*: −381.42705 au; Greenberg, A.; Bock, C. W.; George, P.; Glusker, J. P. Unpublished results.

  22. Stark, A.-A.; Rastetter, W. H. Structure-activity relationships in the mutagenicity and cytotoxicity of putative metabolites and related analogs of benzene derived from the valence tautomers benzene oxide and oxepin. Environ. Molec. Mutagen 1996, 28, 284–293.

    Google Scholar 

  23. Latriano, L.; Zaccaria, A.; Goldstein, B. D.; Witz, G. Muconaldehyde formation from free 14C-benzene in a hydroxyl-radical generating system. J. Free Radical Biol. Med. 1986, 1, 363–371.

    Google Scholar 

  24. Kirley, T. A.; Goldstein, B. D.; Maniara, W. M.; Witz, G. Metabolism of trans,trans-muconaldehyde, a microsomal hematotoxic metabolite of benzene, by purified yeast dehydrogenase and a mouse liver soluble fraction. Toxicol. Appl. Pharmacol. 1989, 100, 360–367.

    PubMed  Google Scholar 

  25. Goon, D.; Cheng, X.; Ruth, J. A.; Petersen, D. R.; Ross, D. Metabolism of trans,trans-muconaldehyde by aldehyde and alcohol dehydrogenase: Identification of a novel metabolite. Toxicol. Appl. Pharmacol. 1992, 114, 147–155.

    PubMed  Google Scholar 

  26. Baumgarten, H. F. (editor-in-chief). Organic Syntheses, collective vol. 5; J. Wiley and Sons: New York, 1973, pp. 467–471.

    Google Scholar 

  27. Mello, R.; Fiorentino, M.; Sciacovelli, O.; Curci, R. On the isolation and characterization of methyl(trifluoromethyl)dioxirane. J. Org. Chem. 1988, 53, 3890–3891.

    Google Scholar 

  28. Mello, R.; Fiorentino, M.; Fusco, C.; Curci, R. Oxidations by methyl(trifluoromethyl)dioxirane. 2. Oxyfunctionalization of saturated hydrocarbons. J. Am. Chem. Soc. 1989, 111, 6749–6757.

    Google Scholar 

  29. Hopf, H.; Hamann, V.; Zimmerman, G.; Remmler, M. The propargyl-Cope rearrangement of meso-and d,l-3,4-dimethyl-1,5-hexadiyne-3,4-diol. Chem. Ber. 1994, 127, 959–963.

    Google Scholar 

  30. Golding, B. T.; Kennedy, G.; Watson, W. P. Simple syntheses of isomers of muconaldehyde and 2-methylmuconaldehyde. Tetrahedron Lett. 1988, 29, 5991–5994.

    Google Scholar 

  31. Baumstark, A. L.; McCloskey, C. J. Epoxidation of alkenes by dimethyldioxirane: Evidence for a spiro transition state. Tetrahedron Lett. 1987, 28, 3311–3314.

    Google Scholar 

  32. Baumstark, A. L.; Vasquez, P. C. Epoxidation by dimethyldioxirane: Electronic and steric effects. J. Org. Chem. 1988, 53, 3437–3439.

    Google Scholar 

  33. Jackman, L. M.; Sternhell, S. Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, 2nd ed.; Pergamon Press: Oxford, 1969, pp. 272, 302.

    Google Scholar 

  34. Aczel, T.; Lumpkin, H. E. Correlation of mass spectra with structure in aromatic oxygenated compounds: Aromatic alcohols and phenols. Anal. Chem. 1960, 32, 1819–1822.

    Google Scholar 

  35. Welti, D. Infrared Vapour Spectra. Heyden & Son Ltd.: London, 1970, Chapter 5, Index Nos. 56–61.

    Google Scholar 

  36. Greenberg, A. Exploration of selected pathways for metabolic oxidative ring opening of benzene based on estimates of molecular energetics, in Active Oxygen in Biochemistry, J. S. Valentine, C. S. Foote, A. Greenberg, and J. F. Liebman, eds.; Blackie Academic & Professional: London, 1995, pp. 419–422.

    Google Scholar 

  37. Murray, R. W.; Singh, M.; Rath, N. P. Reaction of hexame-thylbenzene with dimethyldioxirane. J. Org. Chem. 1996, 61, 7660–7661.

    PubMed  Google Scholar 

  38. Greenberg, A.; Bock, C. W.; George, P.; Glusker, J. P. Mechanism of metabolic ring opening of benzene and its relation to mammalian PAH metabolism. Polycyclic Arom. Cmpds. 1994, 7, 123–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenberg, A., Ozari, A. & Carlin, C.M. Reactions of 2,7-Dimethyloxepin with Dimethyldioxirane and Methyl(trifluoromethyl)dioxirane: Ring Opening and Probable Observation of the Intermediate “2,3-Epoxyoxepin”. Structural Chemistry 9, 223–236 (1998). https://doi.org/10.1023/A:1022427232134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022427232134

Keywords

Navigation