Skip to main content
Log in

Spatial Electron Relaxation: Comparison of Monte Carlo and Boltzmann Equation Results

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In former investigations on the spatial relaxation of the electron component of weakly ionized plasmas a considerable spectrum of distinct spatial structures has been found in the velocity distribution function as well as in various macroscopic quantities of the electrons. These results have been mainly obtained by solving the spatially inhomogeneous electron Boltzmann equation considering the action of uniform electric fields and the impact of elastic and inelastic collisions of the electrons with the gas atoms. To verify these partly unexpected results on the complex structure formation, analogous Monte Carlo simulations were performed now for a helium plasma at various reduced electric field strengths. Detailed comparisons were made between the results of the two independent kinetic approaches with respect to the spatial evolution of the velocity distribution function as well as of associated macroscopic quantities. Good agreement was generally found, thus confirming the earlier results on the complex spatial relaxation structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. D. Tsendin, Plasma Sources Sci. Technol. 4, 200(1995).

    Google Scholar 

  2. V. I. Kolobov and V. A. Godyak, IEEE Trans. Plasma Sci. 23, 503(1995).

    Google Scholar 

  3. J. P. Boeuf and E. Marode, J. Phys. D: Appl. Phys. 15, 2169(1982).

    Google Scholar 

  4. V. D. Stojanovic and Z. L. Petrovic, J. Phys. D: Appl. Phys. 31, 834(1998).

    Google Scholar 

  5. J. E. Lawler and U. Kortshagen, J. Phys. D: Appl. Phys. 32, 3188(1999).

    Google Scholar 

  6. Z. Donko, J. Appl. Phys. 88, 2226(2000).

    Google Scholar 

  7. A. Bogaerts and R. Gijbels, J. Anal. Atomic Spectro. 15, 1191(2000).

    Google Scholar 

  8. E. Kawamura and J. H. Ingold, J. Phys. D: Appl. Phys. 34, 3150(2001).

    Google Scholar 

  9. V. I. Kolobov, G. J. Parker, and W. N. G. Hitchon, Phys. Rev. E 53, 1110(1996).

    Google Scholar 

  10. J. Feng and W. N. G. Hitchon, Phys. Rev. E 61, 3160(2000).

    Google Scholar 

  11. C. Busch and U. Kortshagen, Phys. Rev. E 51, 280(1995).

    Google Scholar 

  12. D. Uhrlandt and R. Winkler, J. Phys. D: Appl. Phys. 29, 115(1996).

    Google Scholar 

  13. L. L. Alves, G. Gousset, and C. M. Ferreira, Phys. Rev. E 55, 890(1997).

    Google Scholar 

  14. F. Sigeneger, Y. B. Golubovskii, I. A. Porokhova, and R. Winkler, Plasma Chem. Plasma Process. 18, 153(1998).

    Google Scholar 

  15. V. S. Egonov, Y. B. Golubovski, E. Kindel, I. B. Mekhov, and C. Shimke, Phys. Rev. E 60, 5971(1999).

    Google Scholar 

  16. T. Petrova and G. M. Petrov, Phys. Scr. 61, 102(2000).

    Google Scholar 

  17. S. Arndt, D. Uhrlandt, and R. Winkler, J. Phys. D: Appl. Phys. 34, 1982(2001).

    Google Scholar 

  18. G. Petrov and R. Winkler, Plasma Chem. Plasma Process. 18, 113(1998).

    Google Scholar 

  19. F. Sigeneger and R. Winkler, Contrib. Plasma Phys. 36, 551(1996).

    Google Scholar 

  20. R. Winkler, G. Petrov, F. Sigeneger, and D. Uhrlandt, Plasma Sources Sci Technol. 6, 118(1997).

    Google Scholar 

  21. F. Sigeneger and R. Winkler, Plasma Chem. Plasma Process. 17, 1(1997).

    Google Scholar 

  22. F. Sigeneger and R. Winkler, Plasma Chem. Plasma Process. 17, 281(1997).

    Google Scholar 

  23. N. A. Dyatko and A. P. Napartovich, J. Phys. D: Appl. Phys. 32, 3169(1999).

    Google Scholar 

  24. Y. Sakai, H. Tagashira, and S. Sakamoto, J. Phys. D: Appl. Phys. 10, 1035(1977).

    Google Scholar 

  25. M. Hayashi, "Electron collision cross sections," in Plasma Material Science Handbook, Japan Society for the Promotion of Science (ed.), Ohmsha, Tokyo, 1992, p. 748.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigeneger, F., Dyatko, N. & Winkler, R. Spatial Electron Relaxation: Comparison of Monte Carlo and Boltzmann Equation Results. Plasma Chemistry and Plasma Processing 23, 103–116 (2003). https://doi.org/10.1023/A:1022420920041

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022420920041

Navigation