Skip to main content
Log in

A Metric for an Evans-Vigier Field

  • Published:
Foundations of Physics Letters

Abstract

In this paper we present an example of a specific metric which geometrizes explicitly a light-like four-vector potential field (Evans-Vigier field). We define the concepts of ‘semilocal’ and ‘complete’ geometrization and show that a light-like vector field has the same geometrical structure as a gravitational Kerr field. With this background in mind we discuss a theoretical proposition that a rotating body generates, besides a special gravitational field, a magnetic-type gauge field which might be identified with a geometrized Evans- Vigier field. We finally present a discussion which inform us that a classical Evans-Vigier field represents a novel type of field because we cannot identify it with any of the known electromagnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Evans, Found. Phys. Lett. 8, 279 (1995).

    Article  MathSciNet  Google Scholar 

  2. H. Sokolik and J. Rosen, Gen. Rel. Grav. 14, 707 (1982).

    ADS  Google Scholar 

  3. P. Havas and J. N. Goldberg, Phys. Rev. 128, 398 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodynamics (Benjamin, New York, 1967), p. 26.

    MATH  Google Scholar 

  5. R. G. Beil, Int. J. Theoret. Phys. 26, 189 (1987).

    Article  MathSciNet  Google Scholar 

  6. P. Droz-Vincent, Nuovo Cimento LI B, 555 (1967).

    Article  ADS  Google Scholar 

  7. C. Ciubotariu, Gen. Rel. Grav. 27, 129 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. Girtu and C. Ciubotariu, Anal. Univ. Vest Timisoara 33, 61 (1995).

    Google Scholar 

  9. S. Roy, Ada Applicandae Mathematicae 26, 209 (1992).

    Article  Google Scholar 

  10. G. N. Ord, J. Phys. A: Math. Gen. 16, 1869 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  11. G. N. Ord, Chaos, Solitons & Fractals 7, 821 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  12. L. Nottale, Chaos, Solitons & Fractals 7, 877 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  13. H. Yilmaz, Nuovo Cimento 107B, 941 (1992); “Did the Apple Fall?,” in Frontiers of Fundamental Physics, M. Barone and F. Selleri, eds. (Plenum, New York, 1994).

    Article  ADS  MathSciNet  Google Scholar 

  14. F. I. Cooperstock and D. N. Vollick, Nuovo Cimento 111B, 266 (1996).

    ADS  MathSciNet  Google Scholar 

  15. W. Israel and R. Trollope, J. Math. Phys 2, 777 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  16. D. V. Ahluwalia and T.-Y. Wu, Lett. Nuovo Cimento 23, 406 (1978).

    Article  ADS  Google Scholar 

  17. M. W. Evans, Physica B182, 237 (1992); Physica B183, 103 (1993).

    ADS  Google Scholar 

  18. A. H. Epstein and S. D. Senturia, Science 276, 1211 (1997).

    Article  Google Scholar 

  19. B. R. Holstein, Am. J. Phys. 59, 1080 (1991).

    Article  ADS  Google Scholar 

  20. V. B. Bezerra, J. Math. Phys. 30, 2895 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  21. E. G. Harris, Am. J. Phys. 64, 378 (1996).

    Article  ADS  Google Scholar 

  22. M. Fontaine and P. Amiot, Ann. Phys. 147, 269 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  23. C. Möller, Selected Problems in General Relativity, Brandeis University, Summer Institute in Theoretical Physics, Lecture Notes, 1960.

    MATH  Google Scholar 

  24. M. S. Morris, K. S. Thome and U. Yurtsver, Phys. Rev. Lett. 61, 1446 (1988).

    Article  ADS  Google Scholar 

  25. M. Alcubierre, Class. Quantum Grav. 11, L73 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  26. I. R. Kenyon, General Relativity (Oxford University Press, Oxford, 1990).

    Google Scholar 

  27. L. P. Hughston and K. P. Tod, An Introduction to General Relativity (Cambridge University Press, Cambridge, 1990). R. Adler, M. Bazin, and M. SchrifFer, Introduction to General Relativity (McGraw-Hill, New York, 1975).

    MATH  Google Scholar 

  28. J. Argyris and C. Ciubotariu Magnetic-Type Vortex Fields in Kerr-Schild Spacetimes, in preparation.

  29. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), 2nd edn.

    MATH  Google Scholar 

  30. N. Salingaros, Am. J. Phys. 53, 361 (1985).

    Article  ADS  Google Scholar 

  31. P. A. M. Dirac, Proc. Roy. Soc. A209, 291 (1951); A212, 330 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Melvin, Nature 171, 890 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  33. S. Parrott, Relativistic Electrodynamics and Differential Geometry (Springer, New York, 1987).

    Book  MATH  Google Scholar 

  34. R. J. Jackiw, Gauge-Specification in a Non-Abelian Gauge Theory, Orbis Scientiae Conference, Coral Gables, Florida, January 1978.

  35. R. C. Pappas, Am. J. Phys. 52, 255 (1984); 53, 912 (1985).

    Article  ADS  Google Scholar 

  36. N. P. Konopleva and V. N. Popov, Gauge Fields (Physics) (Harwood Academic, Chur, 1981).

    MATH  Google Scholar 

  37. M. Chaichian and N. F. Nelipa, Introduction to Gauge Field Theories (Springer, Berlin, 1984).

    Book  Google Scholar 

  38. R. G. Beil, Int. J. Theor. Phys. 30, 1663 (1991).

    Article  MathSciNet  Google Scholar 

  39. M. A. Schweizer, Am. J. Phys. 58, 930 (1990).

    Article  ADS  Google Scholar 

  40. C. Ciubotariu, Phys. Lett. A158, 27 (1991).

    Article  ADS  Google Scholar 

  41. C. Ciubotariu, Gen. Rel. Grav. 28, 405 (1996).

    Article  ADS  Google Scholar 

  42. J. A. Ferrari, J. Griego and E.. E. Falco, Gen. Rel. Grav. 21, 69 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  43. H. Honl and H. Dehnen, Ann. Phys. (Leipzig) 11, 201 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  44. H. Dehnen, Z. Phys. 199, 360 (1967).

    Article  ADS  Google Scholar 

  45. L. D. Raigorodski, Phys. Lett. A32, 527 (1970); A34, 434 (1971); A37, 273 (1971).

    Article  ADS  Google Scholar 

  46. J. L. Synge, Relativity: The Special Theory (North-Holland, Amsterdam, 1956).

    MATH  Google Scholar 

  47. J. Buitrago, Eur. J. Phys. 16, 113 (1995).

    Article  Google Scholar 

  48. D. W. Sciama, “On the Analogy between Charge and Spin in General Relativity,” inn Recent Developments in General Relativity, A. Trautman, ed. (Pergamon, Warsaw, 1962).

    Google Scholar 

  49. A. S. Goldhaber and M. M. Nieto, Rev. Mod. Phys. 43, 277 (1971).

    Article  ADS  Google Scholar 

  50. P. D. B. Collins, A. D. Martin and E. J. Squires, Particle Physics and Cosmology (Wiley, New York, 1989).

    Book  Google Scholar 

  51. J. Plebanski, Lectures on Non-Linear Electrodynamics, NORDITA, Copenhagen, 1970.

    Google Scholar 

  52. V. Pope, The Cinematic Light- Wave, Lecture Notes, Evans Electronic University, Craigcefnparc, Swansea, United Kingdom, November 27, 1997.

    Google Scholar 

  53. G. L. Murphy and R. R. Burman, Astrophysics and Space Science 56, 363 (1978).

    Article  ADS  Google Scholar 

  54. A. Barnes, Astrophys. J. 227, 1 (1979).

    Article  ADS  Google Scholar 

  55. H. Hora, Physics of Laser Driven Plasmas (Wiley, New York, 1981).

    Google Scholar 

  56. H. C. Ohanian, Am. J. Phys. 54, 500 (1985).

    Article  ADS  Google Scholar 

  57. M. M. Novak, Fortschr. Phys. 37, 125 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corneliu Ciubotariu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyris, J., Ciubotariu, C. & Andreadis, I. A Metric for an Evans-Vigier Field. Found Phys Lett 11, 141–163 (1998). https://doi.org/10.1023/A:1022406414943

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022406414943

Key words

Navigation