Skip to main content
Log in

Recognition and Binding of Mitochondrial Presequences during the Import of Proteins into Mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Nuclear-encoded mitochondrial proteins are imported into mitochondria due to the presence of a targeting sequence, the presequence, on their amino termini. Presequences, which are typically proteolyzed after a protein has been imported into a mitochondrion, lack any strictly conserved primary structure but are positively charged and are predicted to form amphiphilic α-helices. Studies with synthetic peptides corresponding to various presequences argue that presequences can partition nonspecifically into the mitochondrial outer membrane and that the specificity of translocation of precursors into mitochondria may depend on interactions of the presequence with the electrical potential of the inner membrane. Although proteins of the outer membrane that are necessary for the translocation of precursor proteins have been proposed to function as receptors for presequences, the binding of presequences to these proteins has not been demonstrated directly. Proteins of the mitochondrial outer membrane may not be responsible for the specificity of translocation of precursors but may instead function, together with cytosolic molecular chaperones, to maintain precursor proteins in conformations that are competent for translocation as the precursors associate with the mitochondrial surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Allison, D. S., and Schatz, G. (1986). Proc. Natl. Acad. Sci. USA 83, 9011–9015.

    Google Scholar 

  • Aoyagi, H., Lee, S., Kanmera, T., Mihara, H., and Kato, T. (1987). J. Biochem. (Tokyo) 102, 813–820.

    Google Scholar 

  • Baker, A., and Schatz, G. (1987). Proc. Natl. Acad. Sci. USA 84, 3117–3121.

    Google Scholar 

  • Baker, K. P., Schaniel, A., Vestweber, D., and Schatz, G. (1990). Nature 348, 605–609.

    Google Scholar 

  • Becker, K., Guiard, B., Rassow, J., Söllner, T., and Pfanner, N. (1992). J. Biol. Chem. 267, 5637–5643.

    Google Scholar 

  • Bedwell, D. M., Strobel, S. A., Yun, K., Jongeward, G. D., and Emr, S. D (1989). Mol. Cell. Biol. 9, 1014–1025.

    Google Scholar 

  • Blond-Elguindi, S., Cwirla, S. E., Dower, W. J., Lipshutz, R. J., Sprang, S. R., Sambrook, J. F., and Gething, M. J. (1993). Cell 75, 717–728.

    Google Scholar 

  • Bolliger, L., Junne, T., Schatz, G., and Lithgow, T. (1995). EMBO J. 14, 6318–6326.

    Google Scholar 

  • Bruch, M. D., and Hoyt, D. W. (1992). Biochim. Biophys. Acta 1159, 81–93.

    Google Scholar 

  • Cerione, R. A. (1991). Biochim. Biophys. Acta 1071, 473–501.

    Google Scholar 

  • Chen, L. B. (1988). Annu. Rev. Cell Biol. 4, 155–181.

    Google Scholar 

  • Cuatrecasas, P., and Hollenberg, M. D. (1976). Adv. Protein Chem. 30, 251–451.

    Google Scholar 

  • Cyr, D. M., and Douglas, M. G. (1991). J. Biol. Chem. 266, 21700–21708.

    Google Scholar 

  • DeGrado, W. F., and Lear, J. D. (1990). Biopolymers 29, 205–213.

    Google Scholar 

  • de Kroon, A. I., de Gier, J., and de Kruijff, B. (1991). Biochim. Biophys. Acta 1068, 111–124.

    Google Scholar 

  • Deshaies, R. J., Koch, B. D., Werner-Washburne, M., Craig, E. A., and Schekman, R. (1988). Nature 332, 800–805.

    Google Scholar 

  • Eilers, M., and Schatz, G. (1986). Nature 322, 228–232.

    Google Scholar 

  • Endo, T., Mitsui, S., Nakai, M., and Roise, D. (1996). J. Biol. Chem. 271, 4161–4167.

    Google Scholar 

  • Epand, R. M., Hui, W.-H., Argan, C., Gillespie, L. L., and Shore, G. C. (1986). J. Biol. Chem. 261, 10017–10020.

    Google Scholar 

  • Flynn, G. C., Pohl, J., Flocco, M. T., and Rothman, J. E. (1991). Nature 353, 726–730.

    Google Scholar 

  • Furuya, S., Okada, M., Ito, A., Aoyagi, H., Kanmera, T., Kato, T., Sagara, Y., Horiuchi, T., and Omura, T. (1987). J. Biochem. (Tokyo) 102, 821–832.

    Google Scholar 

  • Furuya, S., Mihara, K., Aimoto, S., and Omura, T. (1991). EMBO J. 10, 1759–1766.

    Google Scholar 

  • Gasser, S. M., Daum, G., and Schatz, G. (1982). J. Biol. Chem. 257, 13034–13041.

    Google Scholar 

  • Gething, M. J., and Sambrook, J. (1992). Nature 355, 33–45.

    Google Scholar 

  • Gillespie, L. L., Argan, C., Taneja, A. T., Hodges, R. S., Freeman, K. B., and Shore, G. C. (1985). J. Biol. Chem. 260, 16045–16048.

    Google Scholar 

  • Gragerov, A., Zeng, L., Zhao, X., Burkholder, W., and Gottesman, M. E. (1994). J. Mol. Biol. 235, 848–854.

    Google Scholar 

  • Gratzer, S., Lithgow, T., Bauer, R. E., Lamping, E., Paltauf, F., Kohlwein, S. D., Haucke, V., Junne, T., Schatz, G., and Horst, M. (1995). J. Cell Biol. 129, 25–34.

    Google Scholar 

  • Hachiya, N., Alam, R., Sakasegawa, Y., Sakaguchi, M., Mihara, K., and Omura, T. (1993). EMBO J. 12, 1579–1586.

    Google Scholar 

  • Hachiya, N., Komiya, T., Alam, R., Iwahashi, J., Sakaguchi, M., Omura, T., and Mihara, K. (1994). EMBO J. 13, 5146–5154.

    Google Scholar 

  • Hachiya, N., Mihara, K., Suda, K., Horst, M., Schatz, G., and Lithgow, T. (1995). Nature 376, 705–709.

    Google Scholar 

  • Hajek, P. and Bedwell, D. M. (1994). J. Biol. Chem. 269, 7192–7200.

    Google Scholar 

  • Hammen, P. K., Gorenstein, D. G., and Weiner, H. (1994). Biochemistry 33, 8610–8617.

    Google Scholar 

  • Hartl, F. U., Pfanner, N., Nicholson, D. W., and Neupert, W. (1989). Biochim. Biophys. Acta 988, 1–45.

    Google Scholar 

  • Haucke, V., Lithgow, T., Rospert, S., Hahne, K., and Schatz, G. (1995). J. Biol. Chem. 270, 5565–5570.

    Google Scholar 

  • Haucke, V., Horst, M., Schatz, G., and Lithgow, T. (1996). EMBO J. 15, 1231–1237.

    Google Scholar 

  • Hines, V., Brandt, A., Griffiths, G., Horstmann, H., Brutsch, H., and Schatz, G. (1990). EMBO J. 9, 3191–3200.

    Google Scholar 

  • Hönlinger, A., Kubrich, M., Moczko, M., Gartner, F., Mallet, L., Bussereau, F., Eckerskorn, C., Lottspeich, F., Dietmeier, K., Jacquet, M., and Pfanner, N. (1995). Mol. Cell. Biol. 15, 3382–3389.

    Google Scholar 

  • Hoyt, D. W., Cyr, D. M., Gierasch, L. M., and Douglas, M. G. (1991). J. Biol. Chem. 266, 21693–21699.

    Google Scholar 

  • Hurt, E. C., and Van Loon, A. P. G. M. (1986). Trends. Biochem. Sci. 11, 204–207.

    Google Scholar 

  • Iwahashi, J., Furuya, S., Mihara, K., and Omura, T. (1992). J. Biochem. (Tokyo) 111, 451–455.

    Google Scholar 

  • Jaussi, R., Behra, R., Giannattasio, S., Flura, T., and Christen, P. (1987). J. Biol. Chem. 262, 12434–12437.

    Google Scholar 

  • Karslake, C., Piotto, M. E., Pak, Y. K., Weiner, H., and Gorenstein, D. G. (1990). Biochemistry 29, 9872–9878.

    Google Scholar 

  • Kiebler, M., Pfaller, R., Söllner, T., Griffiths, G., Horstmann, H., Pfanner, N., and Neupert, W. (1990). Nature 348, 610–616.

    Google Scholar 

  • Kiebler, M., Keil, P., Schneider, H., van der Klei, I. J., Pfanner, N., and Neupert, W. (1993). Cell 74, 483–492.

    Google Scholar 

  • Komiya, T., Hachiya, N., Sakaguchi, M., Omura, T., and Mihara, K. (1994). J. Biol. Chem. 269, 30893–30897.

    Google Scholar 

  • Komiya, T., Sakaguchi, M., and Mihara, K. (1996). EMBO J. 15, 399–407.

    Google Scholar 

  • Korb, H., and Neupert, W. (1978). Eur. J. Biochem. 91, 609–620.

    Google Scholar 

  • Leenhouts, J. M., de Gier, J., and de Kruijff, B. (1993). FEBS Lett. 327, 172–176.

    Google Scholar 

  • Lemire, B. D., Fankhauser, C., Baker, A., and Schatz, G. (1989). J. Biol. Chem. 264, 20206–20215.

    Google Scholar 

  • Lill, R., and Neupert, W. (1996). Trends Cell. Biol. 6, 56–61.

    Google Scholar 

  • Lithgow, T., Junne, T., Suda, K., Gratzer, S., and Schatz, G. (1994a). Proc. Natl. Acad. Sci. USA 91, 11973–11977.

    Google Scholar 

  • Lithgow, T., Junne, T., Wachter, C., and Schatz, G. (1994b). J. Biol. Chem. 269, 15325–15330.

    Google Scholar 

  • Maccecchini, M. L., Rudin, Y., Blobel, G., and Schatz, G. (1979). Proc. Natl. Acad. Sci. USA 76, 343–347.

    Google Scholar 

  • Madden, D. R., Gorga, J. C., Strominger, J. L., and Wiley, D. C. (1992). Cell 70, 1035–1048.

    Google Scholar 

  • Maduke, M., and Roise, D. (1993). Science 260, 364–367.

    Google Scholar 

  • Martin, J., Mahlke, K., and Pfanner, N. (1991). J. Biol. Chem. 266, 18051–18057.

    Google Scholar 

  • Martinus, R. D., Ryan, M. T., Naylor, D. J., Herd, S. M., Hoogenraad, N. J., and Hoj, P. B. (1995). FASEB J. 9, 371–378.

    Google Scholar 

  • Matsumura, M., Fremont, D. H., Peterson, P. A., and Wilson, I. A. (1992). Science 257, 927–934.

    Google Scholar 

  • Mayer, A., Nargang, F. E., Neupert, W., and Lill, R. (1995a). EMBO J. 14, 4204–4211.

    Google Scholar 

  • Mayer, A., Neupert, W., and Lill, R. (1995b). Cell 80, 127–137.

    Google Scholar 

  • Mayer, A., Neupert, W., and Lill, R. (1995c). J. Biol. Chem. 270, 12390–12397.

    Google Scholar 

  • Moczko, M., Ehmann, B., Gartner, F., Hönlinger, A., Schafer, E., and Pfanner, N. (1994). J. Biol. Chem. 269, 9045–9051.

    Google Scholar 

  • Montal, M., Anholt, R., and Labarca, P. (1986) In Ion Channel Reconstitution (Miller, C., ed.), Plenum, New York, pp. 157–203.

    Google Scholar 

  • Murakami, K., and Mori, M. (1990). EMBO J. 9, 3201–3208.

    Google Scholar 

  • Murakami, K., Amaya, Y., Takiguchi, M., Ebina, Y., and Mori, M. (1988). J. Biol. Chem. 263, 18437–18442.

    Google Scholar 

  • Nakai, M., and Endo, T. (1995). FEBS Lett. 357, 202–206.

    Google Scholar 

  • Ohba, M., and Schatz, G. (1987). EMBO J. 6, 2109–2115.

    Google Scholar 

  • Ono, H., and Tuboi, S. (1988). J. Biol. Chem. 263, 3188–3193.

    Google Scholar 

  • Ou, W. J., Ito, A., Umeda, M., Inoue, K., and Omura, T. (1988). J. Biochem. (Tokyo) 103, 589–595.

    Google Scholar 

  • Pain, D., Murakami, H., and Blobel, G. (1990). Nature 347, 444–449.

    Google Scholar 

  • Pak, Y. K., and Weiner, H. (1990). J. Biol. Chem. 265, 14298–14307.

    Google Scholar 

  • Pfaller, R., Pfanner, N., and Neupert, W. (1989). J. Biol. Chem. 264, 34–39.

    Google Scholar 

  • Pfanner, N., Douglas, M. G., Endo, T., Hoogenraad, N. J., Jensen, R. E., Meijer, M., Neupert, W., Schatz, G., Schmitz, U. K., and Shore, G. C. (1996). Trends. Biochem. Sci. 21, 51–52---

    Google Scholar 

  • Ramage, L., Junne, T., Hahne, K., Lithgow, T., and Schatz, G. (1993). EMBO J. 12, 4115–4123.

    Google Scholar 

  • Rassow, J., Voos, W., and Pfanner, N. (1995). Trends Cell. Biol. 5, 207–212.

    Google Scholar 

  • Riezman, H., Hay, R., Witte, C., Nelson, N., and Schatz, G. (1983). EMBO J. 2, 1113–1118.

    Google Scholar 

  • Roise, D. (1992). Proc. Natl. Acad. Sci. USA 89, 608–612.

    Google Scholar 

  • Roise, D., and Schatz, G. (1988). J. Biol. Chem. 263, 4509–4511.

    Google Scholar 

  • Roise, D., Horvath, S. J., Tomich, J. M., Richards, J. H., and Schatz, G. (1986). EMBO J. 5, 1327–1334.

    Google Scholar 

  • Schatz, G., and Dobberstein, B. (1996). Science 271, 1519–1526.

    Google Scholar 

  • Schleyer, M., and Neupert, W. (1985). Cell 43, 339–350.

    Google Scholar 

  • Sheffield, W. P., Shore, G. C., and Randall, S. K. (1990). J. Biol. Chem. 265, 11069–11076.

    Google Scholar 

  • Skerjanc, I. S., Shore, G. C., and Silvius, J. R. (1987). EMBO J. 6, 3117–3123.

    Google Scholar 

  • Snel, M. M., de Kroon, A. I., and Marsh, D. (1995). Biochemistry 34, 3605–3613.

    Google Scholar 

  • Söllner, T., Griffiths, G., Pfaller, R., Pfanner, N., and Neupert, W. (1989). Cell 59, 1061–1070.

    Google Scholar 

  • Söllner, T., Pfaller, R., Griffiths, G., Pfanner, N., and Neupert, W. (1990). Cell 62, 107–115.

    Google Scholar 

  • Söllner, T., Rassow, J., Wiedmann, M., Schlossmann, J., Keil, P., Neupert, W., and Pfanner, N. (1992). Nature 355, 84–87.

    Google Scholar 

  • Stern, L. J., Brown, J. H., Jardetzky, T. S., Gorga, J. C., Urban, R. G., Strominger, J. L., and Wiley, D. C. (1994). Nature 368, 215–221.

    Google Scholar 

  • Stuart, R. A., Cyr, D. M., Craig, E. A., and Neupert, W. (1994). Trends. Biochem. Sci. 19, 87–92.

    Google Scholar 

  • Swanson, S. T., and Roise, D. (1992). Biochemistry 31, 5746–5751.

    Google Scholar 

  • Tamm, L. K. (1986). Biochemistry 25, 7470–7476.

    Google Scholar 

  • Toninello, A., Dalla Via, L., Siliprandi, D., and Garlid, K. D. (1992). J. Biol. Chem. 267, 18393–18397.

    Google Scholar 

  • Török, Z., Demel, R. A., Leenhouts, J. M., and de Kruijff, B. (1994). Biochemistry 33, 5589–5594.

    Google Scholar 

  • Vestweber, D., Brunner, J., Baker, A., and Schatz, G. (1989). Nature 341, 205–209.

    Google Scholar 

  • Wang, Y., and Weiner, H. (1994). Biochemistry 33, 12860–12867.

    Google Scholar 

  • Wu, F.-S. (1987). Planta 171, 346–357.

    Google Scholar 

  • Zimmermann, R., and Neupert, W. (1980). Eur. J. Biochem. 109, 217–229.

    Google Scholar 

  • Zwizinski, C., Schleyer, M., and Neupert, W. (1984). J. Biol. Chem. 259, 7850–7856.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roise, D. Recognition and Binding of Mitochondrial Presequences during the Import of Proteins into Mitochondria. J Bioenerg Biomembr 29, 19–27 (1997). https://doi.org/10.1023/A:1022403604273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022403604273

Navigation