Skip to main content
Log in

Transport Properties of Selective Membranes Reversible to Nitrogen-Containing Organic Base Cations: Permeability and Ion Flow

  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Main transport properties were studied for selective membranes with low dielectric constants based on liquid ion exchangers involving nitrogen-containing organic base cations. Permeabilities and ion flows through a membrane were calculated for major and interfering ions. Dependences of the transport properties of membranes on the concentrations of the ion exchanger and near-membrane solution and their potentiometric characteristics are presented. It was demonstrated that the transport properties of liquid membranes are determined by two main factors: the transfer of counterions through the phase boundary by the extraction–exchange mechanism and the leaching of the ion exchanger from the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Spichiger, U.E., Chemical Sensors and Biosensors for Medical and Biological Applications, Weinheim: Wiley-VCH, 1998.

    Google Scholar 

  2. Cosofret, V.V. and Buck, R.P., Pharmaceutical Applications of Membrane Sensors, Boca Raton, Florida: CRC, 1992.

    Google Scholar 

  3. Chen, Z.Z. and Qui, Z.F., Applications of Ion-Selective Electrodes in Pharmaceutical Analysis, Beijing: Renmin Weisheng Publ. House, 1985.

    Google Scholar 

  4. Cosofret, V.V., Membrane Electrodes in Drug Substances Analysis, Oxford: Pergamon, 1982.

    Google Scholar 

  5. Ma, T.S. and Hassan, S.S.M., Organic Analysis Using Ion-Selective Electrodes, London: Academic, 1982.

    Google Scholar 

  6. Baiulescu, G.E. and Cosofret, V.V., Applications of Ion-Selective Membrane Electrodes in Organic Analysis, New York: Wiley. Translated under the title Primenenie ion-selektivnykh membrannykh elektrodov v organicheskom analize, Moscow: Mir, 1980.

    Google Scholar 

  7. Solsky, R.L., CRC Crit. Rev. Anal. Chem., 1983, vol. 14, p. 1.

    Google Scholar 

  8. Cosofret, V.V. and Buck, R.P., Ion-Sel. Electrode Rev., 1984, vol. 6, p. 59.

    Google Scholar 

  9. Patriarche, G.J., J. Pharm. Biomed. Anal., 1986, vol. 4, p. 789.

    Google Scholar 

  10. Yao, S. and Nie, L., Anal. Proc., 1987, vol. 24, p. 338.

    Google Scholar 

  11. Zarechenskii, M.A., Gaidukevich, A.N., and Kizim, E.G., Farmatsiya, 1988, vol. 37, p. 88.

    Google Scholar 

  12. Byrne, T.P., Ion-Sel. Electrode Rev., 1988, vol. 10, p.107.

    Google Scholar 

  13. Vytras, K., J. Pharm. Biomed. Anal., 1989, vol. 7, p. 789.

    Google Scholar 

  14. Zhang, Z. and Cosofret, V.V., Ion-Sel. Electrode Rev., 1990, vol. 12, p. 35.

    Google Scholar 

  15. Cosofret, V.A. and Buck, R.P., CRC Crit. Rev. Anal. Chem., 1993, vol. 24, p. 1.

    Google Scholar 

  16. Granzhan, A.V. and Charykov, A.K., Khim.—Farm. Zh., 1993, vol. 28, p. 51.

    Google Scholar 

  17. Kulapina, E.G. and Barinova, O.V., Khim.—Farm. Zh., 1997, vol. 32, p. 40.

    Google Scholar 

  18. Morf, W., The Principles of Ion-Selective Electrodes and of Membrane Transport, Budapest: Akad. Kiado, 1981. Translated under the title Printsipy raboty ionoselektivnykh elektrodov i membrannyi transport, Moscow: Mir, 1985.

    Google Scholar 

  19. Vigassy, T., Ceresa, A., Badertscher, M., Morf, W.E., de Rooij, N.F., and Pretsch, E., Sens. Actuators, B, 2001, vol. 76, p. 476.

    Google Scholar 

  20. Ceresa, A., Sokalski, T., and Pretsch, E., J. Electroanal. Chem., 2001, vol. 501, p. 70.

    Google Scholar 

  21. Ceresa, A., Bakker, E., Hattendorf, B., Günther, D., and Pretsch, E., Anal. Chem., 2001, vol. 73, p. 343.

    Google Scholar 

  22. Morf, W.E., Badertscher, M., Zwickl, T., Reichmuth, P., De Rooij N.F., and Pretsch, E., J. Phys. Chem., 2000, vol. 104, p. 8201.

    Google Scholar 

  23. Bakker, E. and Meyerhoff, M.E., Anal. Chim. Acta, 2000, vol. 416, p. 121.

    Google Scholar 

  24. Morf, W.E., Badrtscher, M., Zwickl, T., De Rooij N.F., and Pretsch, E., J. Phys. Chem., 1999, vol. 103, p. 11346.

    Google Scholar 

  25. Zwickl, T., Sokalski, T., and Pretsch, E., Electroanalysis (N. Y.), 1999, vol. 11, p. 673.

    Google Scholar 

  26. Sokalski, T., Ceresa, A., Fibbioli, M., Zwickl, T., Bakker, E., and Pretsch, E., Anal. Chem., 1999, vol. 71, p.1210.

    Google Scholar 

  27. Sokalski, T., Zwickl, T., Bakker, E., and Pretsch, E., Anal. Chem., 1999, vol. 71, p. 1204.

    Google Scholar 

  28. Mi, Y., Mathison, S., Goines, R., Logue, A., and Bakker, E., Anal. Chim. Acta, 1999, vol. 397, p. 103.

    Google Scholar 

  29. Mathison, S. and Bakker, E., Anal. Chem., 1998, vol. 70, p. 303.

    Google Scholar 

  30. Sokalski, T., Ceresa, A., Zwickl, T., and Pretsch, E., J.Am. Chem. Soc., 1997, vol. 119, p. 11347.

    Google Scholar 

  31. Mathison, S., Goines, R., and Bakker, E., in Chemical and Biological Sensors and Analytical Electrochemical Methods, Ricco, A.J., Butler, M.A., Vanysek, P., Horvai, G., and Silva, A.F., Eds., Sensor and Physical Electrochemistry Divisions, The Electrochem. Soc. Proc. Series, Pennington, 1997, vol. 97-19, p. 646.

    Google Scholar 

  32. Schaller, U., Bakker, E., and Pretsch, E., Anal. Chem., 1995, vol. 67, p. 3123.

    Google Scholar 

  33. Samec, Z., Langmaier, J., Trojánek, A., Samcová, E., and Málek, J., Anal. Sci., 1998, vol. 14, p. 35.

    Google Scholar 

  34. Kulapina, E.G. and Apukhtina, L.V., Elektrokhimiya, 1998, vol. 34, p. 177.

    Google Scholar 

  35. Kulapina, E.G. and Barinova, O.V., Elektrokhimiya, 2001, vol. 37, p. 935.

    Google Scholar 

  36. Jee, J.-G., Kwun, O.C., Jhon, M.S., and Ree, T., Bull. Korean Chem. Soc., 1982, vol. 3, p. 23.

    Google Scholar 

  37. Thoma, A.P., Viviani-Nauer, A., Aravantis, S., Morf, W.E., and Simon, W., Anal. Chem., 1977, vol. 49, p. 1567.

    Google Scholar 

  38. Morf, W.E. and Simon, W., Helv. Chim. Acta, 1986, vol.69, p. 1120.

    Google Scholar 

  39. Horvai, G., Graf, E., Toth, K., Pungor, E., and Buck, R.P., Anal. Chem., 1986, vol. 58, p. 2735.

    Google Scholar 

  40. Van den Berg, A., Van der Wal, P.D., Skowronska-Ptasinska, M., Sundholter, E.J.R., Reingoudt, D.N., and Bergveld, P., Anal. Chem., 1987, vol. 59, p. 2827.

    Google Scholar 

  41. Lindner, E., Graf, E., Niegreisz, Z., Toth, K., Pungor, E., and Buck, R.P., Anal. Chem., 1988, vol. 60, p. 295.

    Google Scholar 

  42. Buhlmann, P., Yajima, S., Tohda, K., and Umezawa, Y., Electrochim. Acta, 1995, vol. 40, p. 3021.

    Google Scholar 

  43. Yajima, S., Tohda, K., Buhlmann, P., and Umezawa, Y., Anal. Chem., 1997, vol. 69, p. 1919.

    Google Scholar 

  44. Markin, V.S. and Sokolov, V.S., Elektrokhimiya, 1988, vol. 26, p. 781.

    Google Scholar 

  45. Koryta, J., J. Electroanal. Chem., 1986, vol. 213, p. 323.

    Google Scholar 

  46. Koryta, J. and Scalicky, M., J. Electroanal. Chem., 1987, vol. 229, p. 265.

    Google Scholar 

  47. Sandblom, J., Eisenman, G., and Walker, J.L., J. Phys. Chem., 1967, vol. 71, p. 3862.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharitonov, S.V. Transport Properties of Selective Membranes Reversible to Nitrogen-Containing Organic Base Cations: Permeability and Ion Flow. Journal of Analytical Chemistry 58, 176–183 (2003). https://doi.org/10.1023/A:1022318424085

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022318424085

Keywords

Navigation