Skip to main content
Log in

The Metabolism of Atypical Antipsychotic Drugs: An Update

  • Published:
Annals of Clinical Psychiatry

Abstract

This paper reviews the current literature describing the metabolism of both multi-receptor clozapine analogue atypical antipsychotic drugs (clozapine, olanzapine, and quetiapine) and serotonin-dopamine antagonist atypical antipsychotic drugs (risperidone, sertindole and ziprasidone), to highlight the significance of those data in the context of clinical practice. The former group of atypical antipsychotic drugs shares a similar tricyclic structural nucleus and are metabolized through three major categorical metabolic pathways—N +-oxidation, N-glucuronidation, and phases 1 and 2 biotransformation with final glucuronidation before renal excretion. Differing in clozapine and olanzapine, quetiapine has incomplete data describing its metabolism. The latter group of atypical antipsychotic drugs has diversified chemical structures and absence of data on N +-oxidation and N-glucuronidation in the literature. But their metabolic routes in phase 1 biotransformation are versatile although current data are far from completion. No apparent significant drug interactions in clinical practice are reported, although QT prolongation is implicated in all those three drugs. None of all six atypical antipsychotic drugs are identified as significant inhibitors or inducers to any co-administered medication. The author suggests the need for more research to address some pertinent clinical issues in the metabolism of those drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gross H, Languor E: DAs Wirkungsprofil eines chemisch neuartigen Breitbandneuroleptikums der Dibenzodiazepingruppe. Wien Med Wochenschr 1966; 116:814–816

    Google Scholar 

  2. Bente D, Engelmeier M-P, Heinrich K, Schmitt W, Hippius H: Klinische Untersuchungen mit einem neuroleptisch wirksamen Dibenzothiazepin-Derivat. Arzneimittelforschung 1966; 16:314–316

    Google Scholar 

  3. Kane J, Honigfeld G, Singer J, Meltzer H: Clozapine for the treatment-resistant schizophrenia: a double blind comparison with chlorpromazine. Arch Gen Psychiatry 1988; 45:780–796

    Google Scholar 

  4. Hippius H: The history of clozapine. Psychopharmacology 1989; 99:S3–5

    Google Scholar 

  5. Shen WW: A history of antipsychotic drug development. Compr Psychiatry, in press

  6. Shen WW: A drug information note for patients receiving antiparkinsonian agents. Hosp Comm Psychiatry 1981; 32:575

    Google Scholar 

  7. Shen WW: Pharmacotherapy of schizophrenia: the American current status. Keio J Med (Tokyo) 1994; 43:192–199

    Google Scholar 

  8. Shen WW: The need for depot atypical antipsychotics in the US. Psychiatr Serv 1998; 49:727

    Google Scholar 

  9. Copoloy D: New name for atypical antipsychotics (letter)? Am J Psychiatry 1997; 154:439

    Google Scholar 

  10. Meltzer HY, Goode DJ, Schyve PM, Young M, Fang VS: Effect of clozapine on human serum prolatin levels. Am J Psychiatry. 1979; 136:1550–1555

    Google Scholar 

  11. Buchanan RW, Holstein C, Brier A: The comparative efficacy and long-term effect of clozapine treatment on neuropsychological test performance. Biol Psychiatry 1994; 36:717–725.

    Google Scholar 

  12. Meltzer HY, Okayli G. Reduction of suicidality during clozapine treatment of neuroleptic-resistant schizophrenia: impact on risk-benefit assessment. Am J Psychiatry. 1995; 152:183–190

    Google Scholar 

  13. Fleischhacker WW: New drugs for the treatment of schizophrenic patients. Acta Psychiatr Scand 1995; Suppl 388:24–30

    Google Scholar 

  14. Shen WW, Lin K-M: Cytochrome P450 monooxygenases and interactions of psychotropic drugs. Int J Psychiatry Med 1991; 21:47–456

    Google Scholar 

  15. Shen WW: Cytochrome P450 monooxygenases and interactions of psychotropic drugs: a five-year update. Int J Psychiatry Med 1995; 25:277–290

    Google Scholar 

  16. Shen WW: The metabolism of psychoactive drugs: a review of enzymatic biotransformation and inhibition. Biol Psychiatry 1997; 41:814–826

    Google Scholar 

  17. Petit FH, Orme-Johnson W, Ziegler DM: The requirement for flavin adenine dinucleotide by a liver microsomal oxygenase catalyzing the oxidation of alkylaryl amines. Biochem Biophys Res Comm 1964; 16:444–448

    Google Scholar 

  18. Ziegler DM: Recent studies on the structure and function of multisubstrate flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol 1993; 33:179–199

    Google Scholar 

  19. Luo H, McKay G, Midha KK: Identification of clozapine N +-glucuronide in the urine of patients treated with clozapine using electrospray mass spectrometry. Biol Mass Spectromet 1994; 23:147–148

    Google Scholar 

  20. Correia MA, Castagnoli N Jr: Pharmacokinetics: II. Drug biotransformation. In: Katzung BG, ed., Basic and Clinical Pharmacology, 2nd ed. Los Altos, California: Lange Medical Publications, 1982:35–43

    Google Scholar 

  21. Lawson MP, Cashman JR, Cresteil T, Dolphin CT, Elfarra AA, Hines RN, Hodgson E, Kimura T, Ozolos J, Phillips IR, Philpot RM, Poulsen LL, Rettie AE, Shephard EA, Williams DE, Ziegler DM: A nomenclature for mammalian flavin-containing monooxygenase gene family based on amino acid sequence identities. Arch Biochem Biophys 1994; 308:254–257

    Google Scholar 

  22. Smyser BP, Hodgson E: Metabolism of phosphorus-containing compounds by liver microsomal FAD-containing monooxygenase. Biochem Pharmacol 1985; 34:1145–1150

    Google Scholar 

  23. Dolphin CT, Janmohamed A, Smith RL, Shephard EA, Philips IR: Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Nat Genet 1997; 17:491–494

    Google Scholar 

  24. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW: P450 superfamily: update on new sequences, gene mapping, accession numbers, and nomenclature. Pharmacogenetics. 1996; 6:1–42

    Google Scholar 

  25. Al-Waiz M, Ayesh R, Mitchell SC, Idle JR, Smith RL: Trimethylaminuria (“fish-odour syndrome”): a study of an affected family. Clin Sci 1988; 74:231–236

    Google Scholar 

  26. Cashman JR, Proudfoot J, Pate DW, Hogberg T: Stereoselective N-oxygenation of zimeldine and homozimeldine by the flavin-containing monooxygenase. Drug Metab Dispos 1988; 16:616–622

    Google Scholar 

  27. Kroemer HK, Klotz U: Glucuronidation of drugs: a re-evaluation of pharmacological significance of the conjugates and modulating factors. Clin Pharmacokinet 1992; 23:292–310

    Google Scholar 

  28. Prakash C, Kamel A, Anderson W, Howard H: Metabolism and excretion of the novel antipsychotyic drug ziprasidone in rats after oral administration of a mixture of 14C-and 3H-labeled ziprasidone. Drug Metab Dispos 1997; 25:206–21

    Google Scholar 

  29. Porter CC, Arison BH, Gruber VF, Titus DC, Vandenheuvel WJA: Human metabolism of cyproheptadine. Drug Metab Dispos 1975; 3:189–197

    Google Scholar 

  30. Chaudhuri NK, Servando OA, Manniello MJ, Luders RC, Chao DK, Bartlett MF: Metabolism of tripelennamine in man. Drug Metab Dispos 1976; 4:372–378

    Google Scholar 

  31. Hawes EM: N +-glucuronidation, a common pathway in human metabolism of drugs with a tertiary amine group. Drug Metab Dispos 1998; 26:830–837

    Google Scholar 

  32. Gauch R, Michaelis W: The metabolism of 8-chloro-11-(4-methy-1-piperzinyl)-5H-dibenzo (b, e)(1,4) diazepine (clozapine) in mice, dogs, and human subjects. Farmaco 1971; 26:667–811

    Google Scholar 

  33. Stock B, Spiteller G, Heipertz R: Exchange of aromatically bound clozapine metabolism by CYP halogen for OH-SCH3 groups in metabolizing clozapine in human organism. Arzneimische Forschrift 1977; 27:982–990

    Google Scholar 

  34. Ackenheil M: Clozapine: pharmacokinetic investigations and biochemical effects. Psychopharmacology. 1989; 99:532–535

    Google Scholar 

  35. Tugnait M, Hawes EM, McKay G, Rettie AE, Haining RL, Midha KK: N-oxygenation of clozapine by flavin-containing monooxygenases. Drug Metab Dispos 1997; 25:524–527

    Google Scholar 

  36. Shader RI. Greenblatt DJ: Clozapine and fluvoxamine, a curious complexity. J Clin Psychopharmacol 1998; 18:101–102

    Google Scholar 

  37. Pirmohamed M, Williams D, Madden S, Templeton E, Park BK: Metabolism and bioactivation of clozapine by human liver in vitro. J Pharmaco Exp Ther 1995; 272:984–990

    Google Scholar 

  38. Linnet K, Olesen OV: Metabolism of clozapine by cDNA-expressed human cytochrome P450 enzymes Drug Metab Dispos 1997; 25:1379–1382

    Google Scholar 

  39. Eiermann B, Engel G, Johnsson I, Zanger UM, Bertilsson L: The involvement of CYP 1A2 and CYP 3A4 in the metabolism of clozapine. Br J Clin Pharmacol 1997; 44:439–446

    Google Scholar 

  40. Bertilsson L, Carrillo JA, Dahl M-L, Llerena A, Alm C, Bondesson U, Lindstrom L, Rodriguez de la Rubia I, Ramos S, Benitez J: Clozapine disposition covaries with CYP1A2 activity determined by a caffeine test. Br J Clin Pharmacol 1994; 38:471–473

    Google Scholar 

  41. Jerling M, Lindstrom L, Bondesson U, Bertilsson L: Fluvoxamine inhibition and carbamezapine induction of the metabolism of clozapine: evidence from a therapeutic drug monitering service. Ther Drug Monit 1994; 16:368–374

    Google Scholar 

  42. Raaska K, Neuvonen PJ: Serum concentrations of clozapine and N-demethylclozapine are unaffected by the potent CYP3A4 inhibitor itraconazole. Eur J Clin Pharmaco 1998; 54:167–170

    Google Scholar 

  43. Fischer V, Vogel B, Maurer G, Tynes PE: The antipsychotic clozapine is metabolized by the polymorphic human microsomal and recombinant cytochrome P450 2D6. J Pharmacol Exp Ther 1992; 260:1355–1360

    Google Scholar 

  44. Zhang G-Q, McKay G, Hubbard JW, Mi KK: Application of electrospray mass spectrometry in identification of intact glucuronide and sulphate conjugates of clozapine in rat. Xenobiotics 1996; 26:542–550

    Google Scholar 

  45. Dain JG, Nicoletti J, Ballard F: Biotransformation of clozapine in humans. Drug Metab Dispos 1997; 25:603–609

    Google Scholar 

  46. Ring BJ, Catlow J, Lindsay TJ, Gillespie T, Roskos LK, Cerimele BJ, Swanson SP, Hamman MA, Wrighton SA: Identification of human cytochrome P450 responsible for the in vitro formation of the major oxidative metabolite of the antipsychotic agent olanzapine. J Pharmacol Exp Theer 1996; 276:658–666

    Google Scholar 

  47. Kassahun K, Mattiuz E, Nyhart E, Jr, Obermeyer B, Gillespie T, Murphy A, Goodwin RM, Tuper D, Callaghan JT, Lemberger L: Disposition and biotransformation of the antipsychotic agent olanzapine in humans. Drug Metab Dispos 1997; 25:81–93

    Google Scholar 

  48. Mattiuz E, Franklin R, Gillespie T, Murphy A, Bersdtein J, Chiu A, Hotten, Kassahun K: Disposition and metabolism of olanzapine in mice, dogs, and rhesus monkeys. Drug Metab Dispos 1997; 25:573–583

    Google Scholar 

  49. Ring BJ, Binkley SN, Vandenbranden M, Wrighton SA: In vitro interaction of the antipsychotic agent olanzapine with human cytochromes P450 CYP2C6, CYP2C19, CYP2D6 and CYP3A. Br J Clin Pharmacol 1996; 41:181–186

    Google Scholar 

  50. Poldinger W, Wider F: Index Psychopharmacorum. Toronto: Huber, 1990

    Google Scholar 

  51. Saller CF, Salama AI: Seroquel: biochemical profile of a potential atypical antipsychotic. Psychopharmacology. 1993; 112:285–292

    Google Scholar 

  52. Ereshesky L: Pharmacokinetics and drug interactions: update for new antipsychotics. J Clin Psychiatry 1996; 57(suppl 11)12–25

    Google Scholar 

  53. Huang M-L, van Peer A, Woestenborghs R, De Coster R, Heykants J, Jansen AAI, Zylicz Z, Visscher HW, Jonkman JHG: Pharmacokinetics of the novel antipsychotic agent risperidone and prolatin response in healthy subjects. Clin Pharmacol Ther 1993; 54:257–268

    Google Scholar 

  54. Mannens G, Huang M-L, Meuldermans W, Hendrickx J, Woestenborghs R, Heykants J: Absorption metabolism and excretion of risperidone in humans. Drug Metab Dispos 1993; 21:1134–1141

    Google Scholar 

  55. Meuldermans W, Hendrickx J, Mannens G, Lavrijsen K, Janssen C, Bracke J, Le Jeune L, Lauwers W, Heykants J: The metabolism and excretion of risperidone after oral administration in rats and dogs. Drug Metab Dispos 1994; 22:129–138

    Google Scholar 

  56. Fang J, Bourin M, Baker GB: Metabolism of risperidone to 9-hydroxyrisperidone by human cytochromes P450 2D6 and 3A4. Naunyn Schmiedeberg's Arch Pharmacol 1999; 359:147–151

    Google Scholar 

  57. Sakamoto K, Nakamura Y, Aikoh S, Baba T, Perregaard J, Pedersen H, Moltzen EK, Mulford DJ, Yamaguchi T: Metabolism of sertindole: identification of the metabolite in the rat and dog, and species comparison of liver microsomal metabolism. Xenobiotica 1995; 25:12:1327–43

    Google Scholar 

  58. Wong SL, Cao G, Mack RJ, Granneman GR: Pharmacokinetics of sertindole in healthy young and elderly male and female subjects. Clin Parmacol Ther 1997; 62:157–164

    Google Scholar 

  59. Wong SL, Menacherry S, Mulford D, Schmitz PJ, Locke C, Granneman GR: Pharmacokinetics of sertindole and dehydrosertindole in volunteers with normal or impaired renal function. Eur J Clin Pharmacol 1997; 52:223–227

    Google Scholar 

  60. Brown LA, Levin GM: Sertindole, a new atypical antipsychotic for the treatment of schizophrenia. Pharmacotherapy 1998; 18:69–83

    Google Scholar 

  61. Guroff G, Daly JW, Jerina DM, Renson J, Witkop B, Udenfriend S: Hydroxylation-induced migration: NIH shift. Science 1967; 157:1524–1530

    Google Scholar 

  62. Prakash C, Kamel A, Gummerus J, Wilner K: Metabolism and excretion of a new antipsychotic drug, ziprasidone, in humans. Drug Metab Dispos 1997; 25:863–872

    Google Scholar 

  63. Prakash C, Kamel A, Cui D: Characterization of the novel benzisothiazole ring-cleaved products of the antipsychotic drug ziprasidone. Drug Metab Dispos 1997; 25:897–901

    Google Scholar 

  64. Sofer SS, Ziegler DM: Microsomal mixed-function amine oxidase: oxidation products of piperazine-substituted phenothiazine drugs. Drug Metab Dispos 1978; 6:232–239

    Google Scholar 

  65. Schlenk D, Peters LD, Livingstone DR: Correction of salinity with flavin-containing monooxygenase activity but not cytochrome P450 activity in the Euryhaline fish (Platichthys flesus): Biolchem Pharmacol 1996; 52:815–818

    Google Scholar 

  66. Byerly MJ DeVane CL: Pharmacokinetics of clozapine and risperidone: a review of recent literature. J Clin Psychopharmacol 1996; 16:177–187

    Google Scholar 

  67. Chang W-H, Lin S-K, Lane H-Y, Wei F-C, Hu W-H, Lam YWF, Jann MW: Reversible metabolism of clozapine and N-oxide in schizophrenic patients. Prog Neuro-Psychopharmacol Biol Psychiatry 1998; 22:723–729

    Google Scholar 

  68. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP: Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270:414–423

    Google Scholar 

  69. Schmider J, Greenblatt DJ, von Moltke LL, Shader RI: Relationship of in vitro data on drug metabolism to in vivo pharmacokinetics and drug interactions: implications for diazepam disposition in humans. J Clin Psychopharmacol 1996; 16:267–272

    Google Scholar 

  70. Coffman BL, Rios GR, Tephly TR: Purification and properties of two rat liver phenobarbital-inducible UDP-glucuronosyl-transferases that catalyze the glucuronidation of opoids. Drug Metab Dispos 1996; 24:329–333

    Google Scholar 

  71. Ishii Y, Takami A, Tsuruda K, Kurogi A, Yamada H, Oguri K: Induction of two UDP-glucuronosyltransferase isoforms sensitive to phenobarbital that are involved in morphine glucuronidation: Production of isoform-selective antipeptide antibodies toward UGT 1.1r and UGT 2b1. Drug Metab Dispos 1997; 25:163–167

    Google Scholar 

  72. Chiu S-HL, Hushey S-EW: Species differences in N-glucuronidation. Drug Metab Dispos 1998; 26:838–847

    Google Scholar 

  73. Chaudhary AK, Hubbard JW, McKay G, Midha KK: Identification of a quarternary ammonium-linked glucuronide of chlorpromazine in the urine of a schizophrenic patient treated with chlorpromazine. Drug Metab Dispos 1988; 16:506–508

    Google Scholar 

  74. Kassahun K, Mattiuz E, Franklin R, Gillespie T: Olanzapine 10 N-glucuronide: a tertiary N-glucuronide unique to human. Drug Metab Dispos 1998; 26:848–855

    Google Scholar 

  75. Green MD, Tephyl TR: Glucuronidation of amine substrates by purified and expressed UDP-glucuronosyltransferase proteins. Drug Metab Dispos 1998; 26:860–807

    Google Scholar 

  76. Lehman JP, Fenselau C, Depaulo JR: Quaternary ammonium-linked glucuronides of amitriptyline, imipramine, and chlorpromazine. Drug Metab Dispos 1983; 11:221–225

    Google Scholar 

  77. Bruck M, Li Q, Lamb JG, Tukey RH: Characterization of rabbit UDP-glucuronosyltransferase UGT1A7: tertiary amine glucuronidation is characterized by UGT1A7 and UGT1A4. Arch Biochem Biophys 1997; 344:357–364

    Google Scholar 

  78. Centorrino F, Baldessarini RJ, Kando JC, Frankenburg FR, Volpicelli SA, Flood JG: Clozapine and metabolites: concentrations in serum and clinical findings during treatment of chronically psychotic patients. J Clin Psychopharmacol 1994; 14:119–125

    Google Scholar 

  79. Meyer MC, Baldessarini RI, Goff DC, Centorrino F: Clinically significant interactions of psychotic agents with antipsychotic drugs. Drug Safety 1996; 15:333–346

    Google Scholar 

  80. Miller DD: The clinical use of clozapine plasma concentrations in the management of treatment-refractory schizophrenia. Ann Clin Psychiatry 1996; 8:99–109

    Google Scholar 

  81. Freeman DJ, Oyewumi K: Will routine therapeutic drug monitering have a place in clozapine therapy? Clin Pharmacokinet 1997; 32:93–100

    Google Scholar 

  82. Jibson MD, Tandon R: New atypical antipsychotic medications. J Psychiatr Res 1998; 32:215–28

    Google Scholar 

  83. Ghahramani P, Ellis SW, Lennard MS, Ramsay LE, Tucker GT: Cytochrome P450 mediating the N-demethylation of amitriptyline. Br J Clin Pharmacol 1997; 43:137–144

    Google Scholar 

  84. Coutts RT, Su P, Baker GB: Involvement of CYP2D6, CYP3A4, and other cytochrome P450 isozymes in N-dealkylation reactions. J Pharmacol Toxicol Methods 1994; 31:177–186

    Google Scholar 

  85. Koymans L, Vermeulen NPE, van Acker SABE, te Koppele JM, Heykants JJP, Lavrijsen K, Meuldermans W, Donne-Op den Kelder GM: A predictive model for substrates of cytochrome P450-debrisoquine (2D6). Chem Res Toxicol 1992; 5:211–219

    Google Scholar 

  86. Strobl GR, von Kruedener S, Stockigt J, Guengerich FP, Wolff T: Development of a pharmacophore for inhibition of human liver cytochrome P-450 2D6: molecular modeling and inhibition studies. J Medicin Chem 1993; 36:1136–1145

    Google Scholar 

  87. Hasegawa M, Gutierrez-Esteinou R, Way L, Meltzer HY: Relationship between clinical efficacy and clozapine concentrations in plasma in schizophrenia: effect of smoking. J Clin Psychopharmacol 1993; 13:383–390

    Google Scholar 

  88. Hubbard JW, Midha KK, Hawes EM, McKay G, Marder SR, Aravagiri M, Korchinski ED: Metabolism of phenothiazine and butyrophenone antipsychotic drugs: a review of some recent research findings and clinical implications. Br J Psychiatry 1993; 163(suppl 22):19–24

    Google Scholar 

  89. von Moltke LL, Greenblatt DJ, Duan SX, Schmider J, Kudchadker L, Fogelman SM, Harmatz JS, Shader RI: Phenacetin O-deethylation by human liver microsomes in vitro: Inhibition by chemical probes, SSRI antidepressants. J Pharmacol Exper Ther 1995; 275:1463–1475

    Google Scholar 

  90. Gerson SL, Arce C, Meltzer HY: N-demethylclozapine: a clozapine metabolite that supresses haemopoisis. Br J Haematol 1994; 86:555–561

    Google Scholar 

  91. Mauri MC, Rudelli R, Bravin S, Gianetti S, Giuliani E, Guerrini A, Orlandi R, Invernizzi G: Clozapine metabolism rate as a possible index of drug-induced granulopenia. Psychopharmacology 1998; 137:341–344

    Google Scholar 

  92. Fischer V, Haar JA, Greiner L, Lloyd RV, Mason RP: Possible role of free radical formation in clozapine (Clozaril)-induced agranulocytosis. Mol Pharmacol 1991; 40:846–853

    Google Scholar 

  93. Maggs JL, Williams D, Pirmohamed M, Park BK: The metabolic formation of reactive intermediates from clozapine, a drug associated with agranulocytosis in man. J Pharmacol Exper Ther 1995; 275:1463–1475

    Google Scholar 

  94. Gardner I, Leeder JS, Chin T, Zahid N, Uetrecht JP: A comparison of the covalent binding of clozapine and olanzapine to human neutrophils in vitro and in vivo. Mol Pharmacol 1998; 53:999–1008

    Google Scholar 

  95. Gerson SL, Guillion G, Yeh HS, Masor C: Granulocyte colony-stimulating factor for clozapine-induced agranulocytosis. Lancet 1992; 340:1097

    Google Scholar 

  96. Weide R, Koppler H, Heymanns J, Pfluger KH, Havemann K: Successful treatment of clozapine induced agranulocytosis with granulocyte-colony stimulating factor (G-CSF). Br. J Haematol 1992; 80:557–559

    Google Scholar 

  97. Jones BC, Hyland R, Ackland M, Tyman CA, Smith DA: Interaction of terfenadine and its primary metabolites with cytochrome P450 2D6. Drug Metab Dispos 1998; 26:875:882

    Google Scholar 

  98. Callaghan JT, Cerimele BJ, Kassahun KJ, Nyhart EH Jr, Hoyes-Beehler J, Kondraske GV: Olanzapine: interaction study with imipramine. J Clin Pharmacol 1997; 37:971–978

    Google Scholar 

  99. Snoeck E, Van Peer A, Sack M, Horton M, Mannens G, Woestenborghs R, Meibach R, Heykants J: Influence of age, renal and liver impairment on the pharmacokinetics of risperidone in man. Psychopharmacology 1995; 122:223–229

    Google Scholar 

  100. McDougle CJ, Fleischmann RL, Epperson CN, Wasylink S, Leckman JF, Price LH: Risperidone addition in fluvoxamine-refractory obsessive-compulsive disorder: three cases. J Clin Psychiatry 1995; 56:526–528

    Google Scholar 

  101. Berigan TR, Harazin JS: Response to risperidone addition in fluvoxamine-refractory obsessive-compulsice disorder: three cases (letter). Am J Psychiatry 1996; 57:594–595

    Google Scholar 

  102. Stein DJ, Bouwer C, Hawkridge S, Emsley RA: Risperidone augmentation of serotonin reuptake inhibitors in obsessive-compulsive and related disorders. J Clin Psychiatry 1997; 58:119–122

    Google Scholar 

  103. Agid O, Lerer B: Risperidone augmentation of paroxetine in a case of severe, treatment-refractory obsessive-compulsive disorder without comorbid psychopathology (letter). J Clin Psychiatry 1999; 60:55:56

    Google Scholar 

  104. De Leon J Bork J: Risperidone and cytochrome 3A (letter). J Clin Psychiatry 1997; 58:450

    Google Scholar 

  105. Lane H-Y, Chang W-H: Risperidone-carbamazepine interactions: is cytochrome P450 3A involved (letter)? J Clin Psychiatry 1998; 59:430–431

    Google Scholar 

  106. Drici M-D, Wang WX, Liu X-K, Woosley RL, Flockhart DA: Prolongation of QT interval in isolated feline hearts by antipsychotic drugs. J Clin Psychopharmacol 1998; 18:477–481

    Google Scholar 

  107. Wong SL, Menacherry S, Mulford D, Schmitz PJ, Locke C, Granneman GR: Pharmacokinetics of sertindole and dehydrosertindole in volunteers with normal or impaired renal function. Eur J Clin Pharmacol 1997; 52:223–227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, W.W. The Metabolism of Atypical Antipsychotic Drugs: An Update. Ann Clin Psychiatry 11, 145–158 (1999). https://doi.org/10.1023/A:1022312111429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022312111429

Navigation