Skip to main content
Log in

Pharmacokinetics and Pharmacodynamics of Lurasidone Hydrochloride, a Second-Generation Antipsychotic: A Systematic Review of the Published Literature

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Lurasidone hydrochloride, a benzisothiazol derivative, is a second-generation (atypical) antipsychotic agent that has received regulatory approval for the treatment of schizophrenia in the US, Canada, the EU, Switzerland, and Australia, and also for bipolar depression in the US and Canada. In addition to its principal antagonist activity at dopamine D2 and serotonin 5-HT2A receptors, lurasidone has distinctive 5-HT7 antagonistic activity, and displays partial agonism at 5-HT1A receptors, as well as modest antagonism at noradrenergic α2A and α2C receptors. Lurasidone is devoid of antihistaminic and anticholinergic activities. It is administered once daily within the range of 40–160 mg/day for schizophrenia and 20–120 mg/day for bipolar depression, and its pharmacokinetic profile requires administration with food. In adult healthy subjects and patients, a 40 mg dose results in peak plasma concentrations in 1–3 h, a mean elimination half-life of 18 h (mostly eliminated in the feces), and apparent volume of distribution of 6173 L; it is approximately 99 % bound to serum plasma proteins. Lurasidone’s pharmacokinetics are approximately dose proportional in healthy adults and clinical populations within the approved dosing range, and this was also found in a clinical study of children and adolescents. Lurasidone is principally metabolized by cytochrome P450 (CYP) 3A4 with minor metabolites and should not be coadministered with strong CYP3A4 inducers or inhibitors. Lurasidone does not significantly inhibit or induce CYP450 hepatic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Volavka J, Citrome L. Oral antipsychotics for the treatment of schizophrenia: heterogeneity in efficacy and tolerability should drive decision-making. Expert Opin Pharmacother. 2009;10:1917–28.

    Article  CAS  PubMed  Google Scholar 

  2. Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet. 2013;382(9896):951–62.

    Article  CAS  PubMed  Google Scholar 

  3. Citrome L, Eramo A, Francois C, Duffy R, Legacy SN, Offord SJ, et al. Lack of tolerable treatment options for patients with schizophrenia. Neuropsychiatr Dis Treat. 2015;11:3095–104.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Citrome L, Johnston S, Nadkarni A, Sheehan JJ, Kamat SA, Kalsekar I. Prevalence of pre-existing risk factors for adverse events associated with atypical antipsychotics among commercially insured and Medicaid insured patients newly initiating atypical antipsychotics. Curr Drug Saf. 2014;9:227–35.

    Article  PubMed  Google Scholar 

  5. Food and Drug Administration. Drug approval package. Latuda (lurasidone hydrochloride) tablets. Sunovion Pharmaceuticals, Inc. clinical review; pharmacology review(s); clinical pharmacology biopharmaceutics review(s). http://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/200603Orig1s000PharmR.pdf. Accessed 12 Jun 2016.

  6. Highlights of prescribing information: Latuda. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/200603s015lbl.pdf. Accessed 3 Apr 2016.

  7. European Medicines Agency. Latuda. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002713/human_med_001737.jsp&mid=WC0b01ac058001d124. Accessed 3 Apr 2016.

  8. Summary Basis of Decision (SBD) for Latuda. Health Canada. 2012. http://www.hc-sc.gc.ca/dhp-mps/prodpharma/sbd-smd/drug-med/sbd_smd_2012_latuda_145406-eng.php#a2. Accessed 3 Apr 2016.

  9. Zohar J, Nutt DJ, Kupfer DJ, Moller HJ, Yamawaki S, Spedding M, et al. A proposal for an updated neuropsychopharmacological nomenclature. Eur Neuropsychopharmacol. 2014;24:1005–14.

    Article  CAS  PubMed  Google Scholar 

  10. Meltzer HY, Li Z, Kaneda Y, Ichikawa J. Serotoninreceptors: theirkeyrole in drugs to treatschizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:1159–72.

    Article  CAS  PubMed  Google Scholar 

  11. Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet. 2009;373:31–41.

    Article  CAS  PubMed  Google Scholar 

  12. Preskorn S, Ereshefsky L, Chiu YY, Poola N, Loebel A. Effect of food on the pharmacokinetics of lurasidone: results of two randomized, open-label, crossover studies. Hum Psychopharmacol Clin Exp. 2013;28:495–505.

    Article  CAS  Google Scholar 

  13. Citrome L. Lurasidone for schizophrenia: a brief review of a new second-generation antipsychotic. Clin Schizophr Relat Psychoses. 2011;4:251–7.

    Article  PubMed  Google Scholar 

  14. Meyer JM, Loebel AD, Schweizer E. Lurasidone: a new drug in development for schizophrenia. Expert Opin Investig Drugs. 2009;18:1715–26.

    Article  CAS  PubMed  Google Scholar 

  15. Lee KR, Chae YJ, Koo TS. Pharmacokinetics of lurasidone, a novel atypical anti-psychotic drug, in rats. Xenobiotica. 2011;41:1100–7.

    Article  CAS  PubMed  Google Scholar 

  16. Wong DF, Kuwabara H, Brašić JR, Stock T, Maini A, Gean EG, et al. Determination of dopamine D2 receptor occupancy by lurasidone using positron emission tomography in healthy male subjects. Psychopharmacology. 2013;229(2):245–52.

    Article  CAS  PubMed  Google Scholar 

  17. Nordström AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C, et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry. 1993;33:227–35.

    Article  PubMed  Google Scholar 

  18. Uchida H, Takeuchi H, Graff-Guerrero A, Suzuki T, Watanabe K, Mamo DC. Dopamine D2 receptor occupancy and clinical effects: a systematic review and pooled analysis. J Clin Psychopharmacol. 2011;31:497–502.

    Article  CAS  PubMed  Google Scholar 

  19. Kapur S, Zipursky RB, Remington G. Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry. 1999;156:286–93.

    CAS  PubMed  Google Scholar 

  20. Uchida H, Takeuchi H, Graff-Guerrero A, Suzuki T, Watanabe K, Mamo DC. Predicting dopamine D2 receptor occupancy from plasma levels of antipsychotic drugs: a systematic review and pooled analysis. J Clin Psychopharmacol. 2011;31:318–25.

    Article  CAS  PubMed  Google Scholar 

  21. Potkin SG, Keator DB, Kesler-West ML, Nguyen DD, van Erp TGM, Mukherjee J, et al. D2 receptor occupancy following lurasidone treatment in patients with schizophrenia or schizoaffective disorder. CNS Spectr. 2014;19:176–81.

    Article  PubMed  Google Scholar 

  22. Chiu YY, Ereshefsky L, Preskorn SH, Poola N, Loebel A. Lurasidone drug-drug interaction studies: a comprehensive review. Drug Metab Drug Interact. 2014;29:191–202.

    Article  CAS  Google Scholar 

  23. Findling RL, Goldman R, Chiu YY, Silva R, Jin F, Pikalov A, et al. Pharmacokinetics and tolerability of lurasidone in children and adolescents with psychiatric disorders. ClinTher. 2015;37(12):2788–97.

    CAS  Google Scholar 

  24. Weisler RH. Carbamazepine extended-release capsules: a new treatment option for bipolar I disorder. Expert Rev Neurother. 2005;5:587–95.

    Article  CAS  PubMed  Google Scholar 

  25. Ketter TA, Wang PW, Miller S. Bipolar therapeutics update 2014: a tale of 3 treatments. J Clin Psychiatry. 2015;76:69–70.

    Article  PubMed  Google Scholar 

  26. Ishibashi T, Horisawa T, Tokuda K, Ishiyama T, Ogasa M, Tagashira R, et al. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther. 2010;334A:171–81.

    Article  Google Scholar 

  27. Caccia S, Pasina L, Nobili A. Critical appraisal of lurasidone in the management of schizophrenia. Neuropsychiatr Dis Treat. 2012;8:155–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fountoulakis KN, Gazouli M, Kelsoe J, Akisal H. The pharmacological properties of lurasidone and their role in its antidepressant efficacy in bipolar disorder. Eur Neuropsychopharmacol. 2015;25:335–42.

    Article  CAS  PubMed  Google Scholar 

  29. European Medicines Agency. Assessment report—Latuda. Procedure no. EMEA/H/C/002713/0000. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002713/WC500164684.pdf. Accessed 15 Jun 2016.

  30. ICH Harmonized Tripartite Guideline. The clinical evaluation of QT/QTC interval prolongation and proarrhythymic potential for non-antiarrhythmic drugs. E14. Current Step 4 version dated 12 May 2005. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E14/E14_Guideline.pdf Accessed 15 Jun 2016.

  31. Meltzer HY. The role of serotonin in antipsychotic drug action. Neuropsychopharmacol. 1999;21:106S–15S.

    Article  CAS  Google Scholar 

  32. Van de Kar LD, Javed A, Zhang Y, Serres F, Raap DK, Gray TS. 5-HT2A receptors stimulate ACTH, corticosterone, oxytocin, renin, and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells. J Neurosci. 2001;21:3572–9.

    PubMed  Google Scholar 

  33. Goldberg TE, Ragland JD, Torrey EF, Gold JM, Bigelow LB, Weinberger DR. Neuropsychological assessment of monozygotic twins discordant for schizophrenia. Arch Gen Psychiatry. 1990;47:1066–72.

    Article  CAS  PubMed  Google Scholar 

  34. Goldberg TE, Gold JM. Neurocognitive functioning in patients with schizophrenia: an overview. In: Bloom FE, Kupfer DJ, editors. Psychopharmacology: the fourth generation of progress. New York: Raven; 1995. p. 1245–57.

    Google Scholar 

  35. Green MD. What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry. 1996;153:321–30.

    Article  CAS  PubMed  Google Scholar 

  36. Schizophrenia. In: American Psychiatric Association (ed). Diagnostic and statistical manual of mental disorders. Fifth ed. Arlington: American Psychiatric Association, 2013. pp. 99–105.

  37. Marder SR. The NIMH-MATRICS project for developing cognition-enhancing agents for schizophrenia. Dialog Clin Neurosci. 2006;8:109–13.

    Google Scholar 

  38. Keefe RS, Harvey PD. Cognitive impairment in schizophrenia. Handb Exp Pharmacol. 2012;213:11–37.

    Article  CAS  Google Scholar 

  39. Bilder RM, Goldman RS, Volavka J, Czobor P, Hoptman M, Sheitman B, et al. Neurocognitive effects of clozapine, olanzapine, risperidone, and haloperidol in patients with chronic schizophrenia or schizoaffective disorder. Am J Psychiatry. 2002;159:1018–28.

    Article  PubMed  Google Scholar 

  40. Harvey PD, Green MF, McGurk SR, Meltzer HY. Changes in cognitive functioning with risperidone and olanzapine treatment: a large-scale, double-blind, randomized study. Psychopharmacology. 2003;169:404–11.

    Article  CAS  PubMed  Google Scholar 

  41. Davidson M, Galderisi S, Weiser M, Werbeloff N, Fleischhacker WW, Keefe RS, et al. Cognitive effects of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: a randomized, open-label clinical trial (EUFEST). Am J Psychiatry. 2009;166:675–82.

    Article  PubMed  Google Scholar 

  42. Harvey PD, Meltzer H, Simpson GM, Potkin SG, Loebel A, Siu C, et al. Improvement in cognitive function following a switch to ziprasidone from conventional antipsychotics, olanzapine, or risperidone in outpatients with schizophrenia. Schizophr Res. 2004;66:101–13.

    Article  PubMed  Google Scholar 

  43. Keefe RS, Silva S, Perkins DO, Lieberman JA. The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophr Bull. 1999;25:201–22.

    Article  CAS  PubMed  Google Scholar 

  44. Enomoto T, Ishibashi T, Tokuda K. IshiyamaT, Toma S, Ito A. Lurasidone reverses MK-801-induced impairment of learning and memory in the Morris water maze and radial-arm maze test in rats. Behav Brain Res. 2008;186:197–207.

    Article  CAS  PubMed  Google Scholar 

  45. Gasbarri A, Cifariello A, Pompili A, Meneses A. Effect of 5-HT7 antagonist SB-269970 in the modulation of working and reference memory in the rat. Behav Brain Res. 2008;195:164–70.

    Article  CAS  PubMed  Google Scholar 

  46. Ishiyama T, Tokuda K, Ishibashi T, Ito A, Toma S, Ohno Y. Lurasidone (SM-13496, a novel atypical antipsychotic drug, reverses MK-801-induced impairment of learning and memory in the rat passive-avoidance test. Eur J Pharmacol. 2007;572:160–70.

    Article  CAS  PubMed  Google Scholar 

  47. Roberts AJ, Krucker T, Levy CL, Slanina KA, Sutcliffe JG, Hedlund PB. Mice lacking 5-HT receptors show specific impairments in contextual learning. Eur J Neurosci. 2004;19:1913–22.

    Article  PubMed  Google Scholar 

  48. Sarkisyan G, Hedlund P. The 5-HT7receptorisinvolved in allocentricspatialmemory information processing. Behav Brain Res. 2009;202:26–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meneses A. 5-HT7 receptor stimulation and blockade: a therapeutic paradox about memory formation and amnesia. Front BehavNeurosci. 2014;8:207.

    Google Scholar 

  50. Hedlund PB, Huitron-Resendiz S, Henriksen SJ, Sutcliffe JG. 5-HT7 receptor inhibition and inactivation induce antidepressant like behavior and sleep pattern. Biol Psychiatry. 2005;58:831–7.

    Article  CAS  PubMed  Google Scholar 

  51. Wesołowska A, Nikiforuk A, Stachowicz K, Tatarczyńska E. Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology. 2006;51:578–86.

    Article  PubMed  Google Scholar 

  52. Bieńkowski P, Dudek D, Samochowiec J. Towards better non-selectivity: the role of 5-HT7 receptors in therapeutic efficacy of a second-generation antipsychotic—lurasidone. Psychiatr Pol. 2015;49:243–53.

    Article  PubMed  Google Scholar 

  53. Perrone-Capano C, Adriani W. Editorial: further understanding of serotonin 7 receptors’ neuro-psycho-pharmacology. Front Behav Neurosci. 2015;9:307.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Celada P, Puig MV, Amargós-Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci. 2004;29:252–65.

    PubMed  PubMed Central  Google Scholar 

  55. Bristol-Myers Squibb Company. Highlights of prescribing information: BuSpar. http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/018731s051lbl.pdf. Accessed 24 Jun 2016.

  56. Hellerstein DJ, Flaxer J. Vilazodone for the treatment of major depressive disorder: an evidence-based review of its place in therapy. Core Evid. 2015;10:49–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Odagaki Y, Totoshima R, Yamauchi T. Trazodone and its active metabolite m-chlorophenylpiperazine as partial agonists at 5-HT1A receptors assessed by [35S]GTPgammaS binding. J Psychopharmacol. 2005;19:235–41.

    Article  CAS  PubMed  Google Scholar 

  58. Schwartz TL, Siddiqui UA, Stahl SM. Vilazodone: a brief pharmacological and clinical review of the novel serotonin partial agonist and reuptake inhibitor. Ther Adv Psychopharmacol. 2011;1:81–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Trivedi MH, Fava M, Wisniewski SR, Thase ME, Quitkin F, Warden D, et al. Medication augmentation after the failure of SSRIs for depression. N Engl J Med. 2006;354:1243–52.

    Article  CAS  PubMed  Google Scholar 

  60. Schatzberg AF, Blier P, Culpepper L, Jain R, Papakostas GI, Thase ME. An overview of vortioxetine. J Clin Psychiatry. 2014;75:1411–8.

    Article  PubMed  Google Scholar 

  61. FDA Center for Drug Evaluation and Research. Summary minutes meeting of the Psychopharmacologic Drugs Advisory Committee, December 1, 2015. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PsychopharmacologicDrugsAdvisoryCommittee/UCM481253.pdf. Accessed 28 Jun 2016.

  62. Stiedl O, Pappa E, Konradsson-Geuken Å, Ögren SO. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front Pharmacol. 2015;6:162.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Weinberger DR, Berman KF, Zec RF. Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia: I. Regional cerebral blood flow evidence. Arch Gen Psychiatry. 1986;43:114–24.

    Article  CAS  PubMed  Google Scholar 

  64. Yuen EY, Li X, Wei J, Horiguchi M, Meltzer HY, Yan Z. The novel antipsychotic drug lurasidone enhances N-methyl-D-aspartate receptor-mediated synaptic responses. Mol Pharmacol. 2012;81:113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Murai T, Nakako T, Ikeda K, Ikejiri M, Ishiyama T, Taiji M. Lack of dopamine D4 receptor affinity contributes to the precognitive effect of lurasidone. Brain Res. 2014;261:26–30.

    CAS  Google Scholar 

  66. Brosda J, Jantschak F, Pertz HH. α2-adrenoreceptors are targets for antipsychotic drugs. Psychopharmacology (Berlin). 2014;231:801–12.

  67. Jantschak F, Brosda J, Franke RT, Fink H, Möller D, Hübner H, et al. Pharmacological profile of 2-bromoterguride at human dopamine D2, porcine serotonin 5-hyrdroxytryptamine 2A, and α2C-adrenergic receptors, and its antipsychotic-like effects in rats. J Pharmacol Exp Ther. 2013;347:57–68.

    Article  CAS  PubMed  Google Scholar 

  68. Sallinen J, Holappa J, Koivisto A, Kuokkanen K, Chapman H, Lehtimäki J, et al. Basic. Clin Pharmacol Toxicol. 2013;113:239–49.

    Article  CAS  Google Scholar 

  69. Marcus MM, Wiker C, Frånberg O, Konradsson-Geuken A, Langlois X, Jardemark K, et al. Adjunctive alpha2-adrenoreceptor blockadeenhances the antipsychotic-likeeffect of risperidone and facilitatescorticaldopaminergic and glutamatergic, NMDA receptor-mediatedtransmission. Int J Neuropsychopharmacol. 2010;13:891–903.

    Article  CAS  PubMed  Google Scholar 

  70. Imaki J, Mae Y, Shimizu S. OhnoY. Therapeutic potential of alpha2 adrenoceptor antagonism for antipsychotic-induced extrapyramidal motor disorders. Neurosci Lett. 2009;454:143–7.

    Article  CAS  PubMed  Google Scholar 

  71. Citrome L. Lurasidone for the acute treatment of adults with schizophrenia: what is the number needed to treat, number needed to harm, and likelihood to be helped or harmed? Clin Schizophr Relat Psychoses. 2012;6:76–85.

    Article  PubMed  Google Scholar 

  72. Citrome L, Ketter TA, Cucchiaro J, Loebel A. Clinical assessment of lurasidone benefit and risk in the treatment of bipolar I depression using number needed to treat, number needed to harm, and the likelihood to be helped or harmed. J Affect Disord. 2014;155:20–7.

    Article  CAS  PubMed  Google Scholar 

  73. Reynolds GP, Hill MJ, Kirk SL. The 5-HT2Creceptor and antipsychotic-inducedweight gain: mechanisms and genetics. J Psychopharmacol. 2006;20:15–8.

    Article  PubMed  Google Scholar 

  74. Citrome L. Lurasidone in schizophrenia: new information about dosage and place in therapy. Adv Ther. 2012;29:815–25.

    Article  CAS  PubMed  Google Scholar 

  75. Abbas AI, Hedlund PB, Huang XP, Tran TB, Meltzer HY, Roth BL. Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo. Psychopharmacol (Berl). 2009;205:119–28.

    Article  CAS  Google Scholar 

  76. Knight JA, Smith C, Toohey N, Klein MT, Teitler M. Pharmacological analysis of the novel, rapid, and potent inactivation of the human 5-hydroxytryptamine7 receptor by risperidone, 9-OH-risperidone, and other inactivating antagonists. Mol Pharmacol. 2009;75:374–80.

    Article  CAS  PubMed  Google Scholar 

  77. Stahl S. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): enhancing serotonin release by combining serotonin (5HT) transporter inhibition with actions at 5HT receptors (5HT1A, 5HT1B, 5HT1D, 5HT7 receptors). CNS Spectr. 2015;20:93–7.

    Article  PubMed  Google Scholar 

  78. Highlights of prescribing information: Seroquel XR. http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/022047s038lbl.pdf. Accessed 30 Jun 2016.

  79. Highlights of prescribing information: Invega. http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021999s030lbl.pdf. Accessed 30 Jun 2016.

  80. Highlights of prescribing information: Viibryd. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/022567s013lbl.pdf. Accessed 28 Jun 2016.

  81. Madan JR, Pawar KT, Dua K. Solubility enhancement studies on lurasidone hydrochloride using mixed hydrotropy. Int J Pharm Investig. 2015;5:114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Greenberg.

Ethics declarations

Funding

No external funding or writing assistance was utilized in the production of this review.

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval of the version to be published.

Conflicts of interest

In the past 36 months, William M. Greenberg has engaged in collaborative research with, and was an employee of, Actavis (Forest), and Leslie Citrome has engaged in collaborative research with, or received consulting or speaking fees, from Acadia, Alexza, Alkermes, Allergan, AstraZeneca, Avanir, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lilly, Forum, Genentech, Janssen, Jazz, Lundbeck, Merck, Medivation, Mylan, Neurocrine, Novartis, Noven, Otsuka, Pfizer, Reckitt Benckiser, Reviva, Shire, Sunovion, Takeda, Teva, Valeant, and Vanda.

Compliance with ethical guidelines

This article does not contain any new studies with human or animal subjects performed by any of the authors. The analysis in this article is based on previously conducted studies, and does not involve any new studies of human or animal subjects performed by any of the authors.

Appendix

Appendix

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenberg, W.M., Citrome, L. Pharmacokinetics and Pharmacodynamics of Lurasidone Hydrochloride, a Second-Generation Antipsychotic: A Systematic Review of the Published Literature. Clin Pharmacokinet 56, 493–503 (2017). https://doi.org/10.1007/s40262-016-0465-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0465-5

Keywords

Navigation