Skip to main content
Log in

A new strategy for backbone resonance assignment in large proteins using a MQ-HACACO experiment

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A new strategy of backbone resonance assignment is proposed based on a combination of the most sensitive TROSY-type triple resonance experiments such as TROSY-HNCA and TROSY-HNCO with a new 3D multiple-quantum HACACO experiment. The favourable relaxation properties of the multiple-quantum coherences and signal detection using the 13C′ antiphase coherences optimize the performance of the proposed experiment for application to larger proteins. In addition to the 1HN, 15N,13Cα and 13C′ chemical shifts the 3D multiple-quantum HACACO experiment provides assignment for the 1Hα resonances in constrast to previously proposed experiments for large proteins. The strategy is demonstrated with the 44 kDa uniformly 15N,13C-labeled and fractionally 35% deuterated trimeric B. subtilis Chorismate Mutase measured at 20 °C and 9 °C. Measurements at the lower temperature indicate that the new strategy can be applied to even larger proteins with molecular weights up to 80 kDa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cavanagh, J., Fairbrother, W.J., Palmer, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy: Principles and Practice. Academic Press, New York, NY.

    Google Scholar 

  • Dayie, K.T. and Wagner, G. (1997) J. Am. Chem. Soc., 119, 7797-7806.

    Google Scholar 

  • Eletsky, A., Kienhöfer, A. and Pervushin, K. (2001) J. Biomol. NMR, 20, 177-180.

    Google Scholar 

  • Ernst, R.R., Bodenhausen, G. and Wokaun, A. (1987) The Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, Oxford.

    Google Scholar 

  • Geen, H. and Freeman, R. (1991) J. Magn. Reson., 93, 93-141.

    Google Scholar 

  • Grzesiek, S., Kuboniwa, H., Hinck, A.P. and Bax, A. (1995) J. Am. Chem. Soc., 117, 5312-5315.

    Google Scholar 

  • Koehl, P. (1999) Prog. Nucl. Mag. Reson. Spectrosc., 34, 257-299.

    Google Scholar 

  • Konrat, R., Yang, D.W. and Kay, L.E. (1999) J. Biomol. NMR, 15, 309-313.

    Google Scholar 

  • Koradi, R., Billeter, M. and Wüthrich, K. (1996) J. Mol. Graph., 14, 51-55.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546-4559.

    Google Scholar 

  • Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn. Reson., 85, 393-399.

    Google Scholar 

  • Mulder, F.A.A., Ayed, A., Yang, D.W., Arrowsmith, C.H. and Kay, L.E. (2000) J. Biomol. NMR, 18, 173-176.

    Google Scholar 

  • Pervushin, K.V. (2000) Quart. Rev. Biophys., 33, 161-197.

    Google Scholar 

  • Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366-12371.

    Google Scholar 

  • Pervushin, K., Vögeli, B. and Eletsky, A. (2002) J. Am. Chem. Soc., 124, 12898-12902.

    Google Scholar 

  • Salzmann, M., Pervushin, K., Wider, G., Senn, H. and Wüthrich, K. (1998) Proc. Natl. Acad. Sci. USA, 95, 13585-13590.

    Google Scholar 

  • Salzmann, M., Pervushin, K., Wider, G., Senn, H. and Wüthrich, K. (1999a) J. Biomol. NMR, 14, 85-88.

    Google Scholar 

  • Salzmann, M., Wider, G., Pervushin, K., Senn, H. and Wüthrich, K. (1999b) J. Am. Chem. Soc., 121, 844-848.

    Google Scholar 

  • Salzmann, M., Wider, G., Pervushin, K. and Wüthrich, K. (1999c) J. Biomol. NMR, 15, 181-184.

    Google Scholar 

  • Salzmann, M., Pervushin, K., Wider, G., Senn, H. and Wüthrich, K. (2000) J. Am. Chem. Soc., 122, 7543-7548.

    Google Scholar 

  • Serber, Z., Richter, C. and Dotsch, V. (2001) Chembiochem, 2, 247-251.

    Google Scholar 

  • Serber, Z., Richter, C., Moskau, D., Bohlen, J.M., Gerfin, T., Marek, D., Haberli, M., Baselgia, L., Laukien, F., Stern, A.S., Hoch, J.C. and Dotsch, V. (2000) J. Am. Chem. Soc., 122, 3554-3555.

    Google Scholar 

  • Shaka, A.J., Keeler, J., Frenkiel, T. and Freeman, R. (1983) J. Magn. Reson., 52, 335-338.

    Google Scholar 

  • Swapna, G.V.T., Rios, C.B., Shang, Z.G. and Montelione, G.T. (1997) J. Biomol. NMR, 9, 105-111.

    Google Scholar 

  • Veeman, W.S. (1984) Prog. NMR Spectrosc., 16, 193-235.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

  • Xia, Y.L., Kong, X.M., Smith, D.K., Liu, Y., Man, D. and Zhu, G. (2000) J. Magn. Reson., 143, 407-410.

    Google Scholar 

  • Yang, D.W. and Kay, L.E. (1999) J. Am. Chem. Soc., 121, 2571-2575.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Pervushin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pervushin, K., Eletsky, A. A new strategy for backbone resonance assignment in large proteins using a MQ-HACACO experiment. J Biomol NMR 25, 147–152 (2003). https://doi.org/10.1023/A:1022225711122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022225711122

Navigation