Skip to main content
Log in

Sensitivity Analysis of Discharge in the Arctic Usa Basin, East-European Russia

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The high sensitivity of the Arctic implies that impact of climate change and related environmental changes on river discharge can be considerable. Sensitivity of discharge to changes in precipitation, temperature, permafrost and vegetation, was studied in the Usa basin, Northeast-European Russia. For this purpose, a distributed hydrological model (RHINEFLOW) was adapted. Furthermore, the effect of climate change simulated by a GCM (HADCM2S750 integration) on runoff was assessed, including indirect effects of permafrost thawing and changes in vegetation distribution. The study shows that discharge in the Usa basin is highly sensitive to changes in precipitation and temperature. The effect of precipitation change is present throughout the year, while temperature changes affect discharge only in seasons when temperature fluctuates around the freezing point (April and October). Discharge is rather sensitive to changes in vegetation. Sensitivity to permafrost occurrence is high in winter, because infiltration and consequently base flow increases if permafrost melts. The effect of climate change simulated by the scenario on discharge was significant. Peak flow can both decrease (by 22%) and increase (by 19%) comparedwith present-day, depending on the amount of winter precipitation. Also, runoff peaks earlier in the season. These results can have implications for the magnitude and timing of the runoff peak, break-up and water-levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anisimov, O. A. and Nelson, F. E.: 1996, ‘Permafrost Distribution in the Northern Hemisphere under Scenarios of Climatic Change’, Glob. Plan. Change 14, 59–72.

    Google Scholar 

  • Bareiss, J., Eicken, H., Helbig, A., and Martin, T.: 1999, ‘Impact of River Discharge and Regional Climatology on the Decay of Sea Ice in the Laptev Sea during Spring and Early Summer’, Arct. Antarc. Alp. Res. 31, 214–229.

    Google Scholar 

  • Bonan, G. B., Chapin, F. S. III, and Thompson, S. L.: 1995, ‘Boreal Forest and Tundra Ecosystems as Components of the Climate System’, Clim. Change 29, 145–167.

    Google Scholar 

  • Bratsev, A. A.: 1982, ‘Water Balance of the European North of the U.S.S.R. and its Geographic Regularities’, Newsletter AS U.S.S.R. 3, Geograph. Ser., 59–64.

  • Chen, B. D., Bromwich, H., Hinea, K. M., and Plan, X.: 1995, ‘Simulations of the 1979–1988 Polar Climates by Global Climate Models’, Ann. Glaciol. 21, 83.

    Google Scholar 

  • Christensen, J. H., Christensen, O. B., Lopez, P., Van Meijgaard, E., and Botzet, M.: 1996, The HIRHAM4 Regional Atmospheric Climate Model, Science Report 96–4, DMI, Copenhagen, p. 51.

    Google Scholar 

  • Christensen, J. H. and Kuhry, P.: 2000, ‘High Resolution Regional Climate Model Validation and Permafrost Simulation for the East–European Russian Arctic’, J. Geophys. Res. 105, 29647–29658.

    Google Scholar 

  • Church, M.: 1974, ‘Hydrology and Permafrost with Reference to Northern North America’, Proceedings Workshop Seminar on Permafrost Hydrology, Canadian National Committee for IHD, Ottowa, pp. 7–20.

  • Cubash, U., Meehl, G. A., Boer, G. J., Stouffer, R. J., Dix, M., Noda, A., Senior, C. A., Raper, S., and Yap, K. S.: 2001, ‘Projections of Future Climate Change’, Chapter 9 in Houghton, J. et al. (eds.), Climate Change 2001: The Scientific Basis, Intergovernmental Panel on Climate Change, Cambridge University Press.

  • Gellens, D. and Roulin, E.: 1998, ‘Streamflow Response of Belgian Catchments to IPCC Climate Change Scenarios’, J. Hydrol. 210, 242–258.

    Google Scholar 

  • Gleick, P. H.: 1987, ‘Regional Hydrologic Consequence of Increases in Atmospheric CO2 and Other Trace Gases’, Clim. Change 10, 137–161.

    Google Scholar 

  • Hagemann, S., Botzet, M., and Machenhauer, B.: 2001, ‘The Summer Drying Problem over South–Eastern Europe: Sensitivity of the Limited Area Model HIRHAM4 to Improvements in Physical Parameterization and Resolution’, Phys. Chem. Earth (B) 26, 391–296.

    Google Scholar 

  • IPCC, 2001: in Houghton, J. et al., Climate Change 2001: The Scientific Basis, Intergovernmental Panel on Climate Change, Cambridge University Press, in press.

  • Johns, T. C., Carnell, R. E., Crossley, J. F., Gregory, J. M., Mitchell, J. F. B., Senior, C. A., Tett, S. F. B., and Wood, R. A.: 1997, ‘The Second Hadley Centre Coupled Ocean–Atmosphere GCM: Model Description, Spinup and Validation’, Clim. Dyn. 13, 103–134.

    Google Scholar 

  • Johns, T. C., Gregory, J. M., Ingram, W. J., Johnson, C. E., Jones, A., Lowe, J. A., Mitchell, J. F. B., Roberts, D. L., Sexton, D. M. H., Stevenson, D. S., Tett, S. F. B., and Woodge, M. J.: 2001, Anthropogenic Climate Change for 1860 to 2100 Simulated with the HadCM3 Model under Updated Emissions Scenarios, Hadley Centre Technical Note No. 22, available from the Hadley Centre for Climate Prediction and Research, The Met. Office, London Road, Bracknell, RG12 SY, U.K.

  • Koster, E. A.: 1993, ‘Global Warming and Periglacial Landscapes’, in Roberts, N. (ed.), ‘The Changing Global Environment’, Blackwell, Cambridge, pp. 127–149.

    Google Scholar 

  • Kuchment, L. S., Gelfan, A. N., and Demidov, V. N.: 2000, ‘A Distributed Model of Runoff Generation in the Permafrost Regions’, J. Hydrol. 240, 1–22.

    Google Scholar 

  • Kwadijk, J. C. J.: 1993, The Impact of Climate Change on the River Rhine, Ph.D. Thesis, Utrecht University, Netherlands Geographical Studies, NGS no. 171, p. 199.

  • Mitchell, J. F. B., Johns, T. C., Gregory, J. M., and Tett, S.: 1995, ‘Climate Response to Increasing Levels of Greenhouse Gases and Sulphate Aerosols’, Nature 376, 501–504.

    Google Scholar 

  • Nash, I. E. and Suthcliffe, I. V.: 1970, ‘River Flow Forecasting through Conceptual Models’, J. Hydrol. 10, 282–290.

    Google Scholar 

  • Nelson, F. E., Anisimov, O. E., and Shiklomanov, N. I.: 2001, ‘Subsidence Risk from Thawing Permafrost’, Nature 410, 889–890.

    Google Scholar 

  • Nijssen, B., O'Donnell, G. M., Hamlet, A. F., and Lettenmaier, D. P.: 2001, ‘Hydrologic Sensitivity of Global Rivers to Climate Change’, Clim. Change 50, 143–175.

    Google Scholar 

  • Oberman, N. G.: 2001, ‘Changes in the Cryolithozone Temperature of the European Northeast of Russia in the Context of 1970–95 Climate Warming’, Proceedings of the 1st European Permafrost Conference, Rome, 26–28 March 2001, p. 17.

  • Oechel, W. C., Hastings, S. J., Vourlitis, G., Jenkins, M., Riechers, G., and Grulke, N.: 1993, ‘Recent Change of Arctic Tundra Ecosystems from a Net Carbon Dioxide Sink to a Source’, Nature 361, 520–523.

    Google Scholar 

  • Penman, H. L.: 1948, ‘Natural Evaporation from Open Water, Bare Soil and Grass’, Proceedings of the Royal Meteorological Society, London, pp. 120–145.

  • Post, W. M., Emanuel, W. R., Zinke, P. J., and Stangenberger, G.: 1982, ‘Soil Carbon Pools and World Life Zones’, Nature 298, 156–159.

    Google Scholar 

  • Priestley, C. H. B. and Taylor, R. J.: 1972, ‘On the Assessment of Surface Heat Flux and Evaporation Using Large–Scale Parameters’, Mon. Wea. Rev. 100, 81–92.

    Google Scholar 

  • Räisänen, J.: 2001, ‘CO2–Induced Climate Change in CMIP2 Experiments. Quantification of Agreement and the Role of Internal Variability’, J. Climate, in press.

  • Rouse, W. R., Douglas, M. S. V., Hecky, R. E., Hershey, A. E., Kling, G. W., Lesack, L., Marsh, P., McDonald, M., Nicholson, B. J., Roulet, N. T., and Smol, J. P.: 1997, ‘Effects of Climate Change on the Freshwaters of Arctic and Subarctic North America’, Hydrol. Proces. 11, 873–902.

    Google Scholar 

  • Serreze, M. C., Walsh, J. E., Chapin III, F. S., Osterkamp, T., Dyurgerov, M., Romanovsky, V., Oechel, W. C., Morison, J., Zhang, T., and Barry, R.: 2000, ‘Observational Evidence of Recent Change in the Northern High–Latitude Environment’, Clim. Change 46, 159–207.

    Google Scholar 

  • Spittlehouse, D. L.: 1989, Estimating Evapotranspiration from Land Surfaces in British Colombia, Estimation of Areal Evapotranspiration, IAHS Publication no. 177, pp. 245–253.

  • Tao, X., Walsh, J. E., and Chapman, W. L.: 1996, ‘An Assessment of Global Climate Simulations of Arctic Air Temperature’, J. Climate 9, 1060–1076.

    Google Scholar 

  • Taskaev, A. I. (red.): 1997, The Atlas on Climate and Hydrology of the Komi Republic, Komi Science Centre, Institute of Biology, Syktyvkar, Russia.

  • Thornthwaite, C. W. and Mather, J. R.: 1957, ‘Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance’, Publications in Climatology X, 183–243.

    Google Scholar 

  • Van Blarcum, S. C., Miller, J. R., and Russell, G. L.: 1995, ‘High Latitude River Runoff in a Doubled CO2 Climate’, Clim. Change 20, 7–26.

    Google Scholar 

  • Van der Linden, S. and Christensen, J. H.: 2002, ‘Improved Hydrological Modelling for Remote Regions Using a Combination of Observed and Simulated Precipitation Data’, J. Geophys. Res., in press.

  • Van Deursen, W. P. A.: 1995, Geographical Information Systems and Dynamic Models, Ph.D.Thesis, Utrecht University, Netherlands Geographical Studies, NGS no. 190.

  • Woo, M. K.: 1990, ‘Consequences of Climatic Change for Hydrology in Permafrost Zones’, J. Cold Regions Eng. 4–1, 15–20.

    Google Scholar 

  • Woo, M. K., Lewkowicz, A. G., and Rouse, W. R.: 1992, ‘Response of the Canadian Permafrost Environment to Climatic Change’, Phys. Geogr. 13, 287–317.

    Google Scholar 

  • Zhang, L., Dawes, W. R., and Walker, G. R.: 2001, ‘Response of Mean Annual Evapotranspiration to Vegetation Changes at Catchment Scale’, Water Resour. Res. 37, 701–708.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Linden, S., Virtanen, T., Oberman, N. et al. Sensitivity Analysis of Discharge in the Arctic Usa Basin, East-European Russia. Climatic Change 57, 139–161 (2003). https://doi.org/10.1023/A:1022194026904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022194026904

Keywords

Navigation