Skip to main content
Log in

Fine-Scale Structure Observed In A Stable Atmospheric Boundary Layer By Sodar And Kite-Borne Tethersonde

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Co-located high resolution profiles of acoustic backscatter,wind vector and potential temperature are presented, measured within the stable atmosphericboundary layer over an Antarctic ice shelf. Acoustic profiles from a monostaticacoustic radar (Sodar) indicate complex structure within the boundary layer, whilstwind and temperature profiles from a tethersonde show corresponding bands of differingstability. Internal waves and fossil convection are shown to invalidate attemptsto compare backscatter measurements with theoretical estimates based on local wind and temperature gradients, but during ideal conditions, a qualitative agreementis observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, P. S.: 1993, 'Evidence for an AntarcticWinter Coastal Polynya', Antarctic Sci. 5, 221–226.

    Google Scholar 

  • Asimakopoulos, D. N., Cole, R. S., Caughey, S. J., and Crease, B. A.: 1976, 'A Quantitative Comparison between Acoustic Sounder Returns and the Direct Measurement of Atmospheric Temperature Fluctuations', Boundary-Layer Meteorol. 19, 137–147.

    Google Scholar 

  • Batchelor, G. K.: 1957, 'Wave Scattering Due to Turbulence', in F. S. Sherman (ed.), Symposium on Naval Hydrodynamics, NAS-NRC Publication No. 515, Nation Research Council, Washington, D.C., pp. 409–430.

    Google Scholar 

  • Beran, D. W., Hooke, W. H., and Clifford, S. F.: 1973, 'Acoustic Echo-Sounding Techniques and Their Application to Gravity-Wave, Turbulence and Stability Studies', Boundary-Layer Meteorol. 4, 133–153.

    Google Scholar 

  • Caughey, S. J., Wyngaard, J. C., and Kaimal, J. C.: 1979, 'Turbulence in the Evolving Stable Boundary Layer', J. Atmos. Sci. 36, 1041–1052.

    Google Scholar 

  • Corrsin, S.: 1951, 'On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence', J. Appl. Phys. 22, 469–473.

    Google Scholar 

  • Culf, A. D.: 1989, 'Acoustic Sounding of the Atmospheric Boundary Layer at Halley, Antarctica', Antarctic Sci. 1, 363–372.

    Google Scholar 

  • Glickman, T. S.: 2000, Glossary of Meteorology, 2nd edn., American Meteorological Society, Boston, MA, 737 pp.

    Google Scholar 

  • Gossard, E. E., Gaynor, J. E., Zamora, R. L., and Neff, W. D.: 1985, 'Finestructure of Elevated Layers Observed by Sounder and In Situ Tower Sensors', J. Atmos. Sci. 42, 2156–2169.

    Google Scholar 

  • Kallistratova, M. A.: 1961, 'Experimental Investigation of Sound Wave Scattering in the Atmosphere', Tr. Inst. Fiz. Atmos., Turbulentost 4, 203–256 (in Russian), (English Translation, U.S. Air Force FTD TT-63–441).

    Google Scholar 

  • King, J. C.: 1989, 'Low-Level Wind Profiles at an Antarctic Coastal Station', Antarctic Sci. 1, 169–178

    Google Scholar 

  • King, J. C.: 1990, 'Some Measurements of Turbulence over an Antarctic Ice Shelf', Quart. J. Roy. Meteorol. Soc. 116, 379–400.

    Google Scholar 

  • King, J. C. and Anderson, P. S.: 1994, 'Heat andWater Vapour Fluxes and Scalar Roughness Lengths over an Antarctic Ice Shelf', Boundary-Layer Meteorol. 69, 101–121.

    Google Scholar 

  • King, J. C., Anderson, P. S., Smith, M. C., and Mobbs, S. D.: 1996, 'The Surface Energy and Mass Balance at Halley, Antarctica during Winter', J. Geophys. Res. 101(D14), 19119–19128.

    Google Scholar 

  • King, J. C., Mobbs, S. D., Rees, J. M., Anderson, P. S., and Culf, A. D.: 1989, 'The Stable Antarctic Boundary Layer Experiment, at Halley Station', Weather 44, 398–405.

  • Kolmogorov, A. N.: 1941, 'Energy Dissipation in Locally Isotropic Turbulence', Doklady AN SSSR 32, 19–21.

    Google Scholar 

  • Little, C. G.: 1969, 'Acoustic Methods for the Remote Probing of the Lower Atmosphere', Proc. IEEE 53, 571–578.

    Google Scholar 

  • McBean, G. A. and Elliott, J. A.: 1975, 'The Vertical Transport of Kinetic Energy by Turbulence and Pressure in the Boundary Layer', J. Atmos. Sci. 32, 753–766.

    Google Scholar 

  • Metcalf, J. I. and Atlas, D.: 1973, 'Microscale Ordered Motions and Atmospheric Structure Associated with Thin Echo Layers in Stably Stratified Zones', Boundary-Layer Meteorol. 4, 7–35.

    Google Scholar 

  • Muschinski, A. and Wode, C.: 1998, 'First In Situ Evidence for Coexisting Submeter Temperature and Humidity Sheets in the Lower Free Troposphere', J. Atmos. Sci. 55, 2893–2906.

    Google Scholar 

  • Neff, W. D.: 1975, 'Quantitative Evaluation of Acoustic Echoes from the Planetary Boundary Layer', J. Atmos. Sci. 36, 1820–1821.

    Google Scholar 

  • Neff, W. D.: 1980, An Observational and Numerical Study of the Atmospheric Boundary Layer Overlying the Eastern Antarctic Ice Sheet, Ph.D. Dissertation, University of Colorado, Boulder, CO.

    Google Scholar 

  • Neff, W. D. and Coulter, R. L.: 1986, 'Acoustic Remote Sounding', in D. H. Lenschow (ed.), Probing the Atmospheric Boundary Layer, American Meteorological Society, Boston, pp. 201–239.

    Google Scholar 

  • Obukhov, A. M.: 1941, 'Energy Distribution in the Spectrum of a Turbulent Flow', Izvestiya AN SSSR, Ser. Geogr. Geofiz. (4–5), 453–466.

    Google Scholar 

  • Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence, Wiley, pp. 182–183.

  • Rees, J. M., Anderson, P. S., and King, J. C.: 1998, 'Observations of Solitary Waves in the Stable Atmospheric Boundary Layer', Boundary-Layer Meteorol. 86, 47–61.

    Google Scholar 

  • Rees, J. M., Denholm-Price, J. C. W., King, J. C., and Anderson, P. S.: 2000, 'A Climatological Study of Internal Gravity Waves in the Atmospheric Boundary Layer Overlying the Brunt Ice Shelf, Antarctica', J. Atmos. Sci. 57, 511–526.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • Tatarskii, V. I.: 1961, Wave Propagation in a Turbulent Medium, R. A. Silverman (trans.), McGraw-Hill, New York, N.Y., 285 pp.

    Google Scholar 

  • Tatarskii, V. I.: 1971, The Effects of the Turbulent Atmosphere on Wave Propagation, Israel Program for Scientific Translations, Jerusalem 1971, ISBN 07065–0680–4.

    Google Scholar 

  • Tennekes, H. and Lumley, J. K.: 1972, A First Course in Turbulence, The MIT Press, Cambridge, MA, 300 pp.

    Google Scholar 

  • Townsend, A. A.: 1976, The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge, pp. 88–93.

    Google Scholar 

  • Varley, M. J.: 1997, 'The Use of Kites to Investigate Boundary Layer Meteorology', Meteorol. Appl. 4, 151–159.

    Google Scholar 

  • Webb, E. K.: 1970, 'Profile Relationships: The Log-Linear Range, and Extension to Strong Stability', Quart. J. Roy. Meteorol. Soc. 96, 67–90.

    Google Scholar 

  • Woods, J. D. (ed.), Högström, V., Misme, P., Ottersten, H., and Phillips, O. M. 1969, 'Fossil Turbulence', Radio Sci. 4, 1365–1367.

  • Wyngaard, J. C. and Cote, O. R.: 1971, 'The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Boundary Layer', J. Atmos. Sci. 28, 190–201.

    Google Scholar 

  • Yague, C., Maqueda, G., and Rees, J. M.: 2001, 'Characteristics of Turbulence in the Lower Atmosphere at Halley IV Station, Antarctica', Dyn. Atmos. Oceans 34, 205–223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, P.S. Fine-Scale Structure Observed In A Stable Atmospheric Boundary Layer By Sodar And Kite-Borne Tethersonde. Boundary-Layer Meteorology 107, 323–351 (2003). https://doi.org/10.1023/A:1022171009297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022171009297

Navigation