Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Vertical profiles of the wind speed, turbulence components, and the temperature in the lower regions of the atmospheric boundary layer can be determined by performing active acoustic and radioacoustic sounding with ground-based devices. This chapter introduces two types of instruments—sound detection and ranging (sodar) devices and radioacoustic sounding systems (RASS)—that can be used to carry out such measurements. While sodars can provide quantitative vertical wind and turbulence profiles and qualitative mixed-layer height and inversion height data, RASS can provide that as well as quantitative temperature profiles. Both types of instruments have a typical height range of several hundreds of meters, and their vertical resolution is on the order of 20 m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S. Emeis: Surface-Based Remote Sensing of the Atmospheric Boundary Layer. In: Atmospheric and Oceanographic Sciences Library, Vol. 40 (Springer, Berlin, Heidelberg 2011)

    Google Scholar 

  • S. Emeis: Upper limit for wind shear in stably stratified conditions expressed in terms of a bulk Richardson number, Meteorol. Z. 26, 421–430 (2017)

    Article  Google Scholar 

  • S. Emeis: Wind Energy Meteorology – Atmospheric Physics for Wind Power Generation, Green Energy and Technology, 2nd edn. (Springer, Berlin, Heidelberg 2018)

    Google Scholar 

  • VDI 3786 Part 11:2015-07: Environmental Meteorology: Ground-Based Remote Sensing of the Wind Vector and the Vertical Structure of the Boundary Layer – Doppler Sodar (Beuth, Berlin 2015)

    Google Scholar 

  • G. Peters: SODAR – Ein akustisches Fernmeßverfahren für die untere Atmosphäre, Promet 21, 55–62 (1991)

    Google Scholar 

  • S. Bradley: Atmospheric Acoustic Remote Sensing – Principles and Applications (CRC Press, Boca Raton 2007)

    Book  Google Scholar 

  • W.H. Bragg, W.L. Bragg: The reflection of X-rays by crystals, Proc. R. Soc. A 88, 428–438 (1913)

    Google Scholar 

  • J.M. Marshall, A.M. Peterson, A. Barnes: Combined radar-acoustic sounding system, Appl. Opt. 11, 108–112 (1972)

    Article  Google Scholar 

  • VDI 3786 Part 18: Environmental Meteorology: Ground-Based Remote Sensing of Temperature Radio-Acoustic Sounding Systems (RASS) (Beuth, Berlin 2010)

    Google Scholar 

  • D.A.M. Engelbart, J. Bange: Determination of boundary-layer parameters using wind profiler/RASS and sodar/RASS in the frame of the LITFASS project, Theor. Appl. Climatol. 73, 53–65 (2002)

    Article  Google Scholar 

  • VDI 3786 Part 17: Environmental Meteorology – Ground-Based Remote Sensing of the Wind Vector – Wind Profiler Radar (Beuth, Berlin 2007)

    Google Scholar 

  • ISO 9613-1:1993-06: Acoustics; Attenuation of Sound During Propagation Outdoors; Part 1: Calculation of the Absorption of Sound by the Atmosphere (International Organization for Standardization, Geneva 1993)

    Google Scholar 

  • R. Wexler, D.M. Swingle: Radar storm detection, Bull. Am. Meteorol. Soc. 28, 159–167 (1947)

    Article  Google Scholar 

  • G.W. Gilman, H.B. Coxhead, F.H. Willis: Reflection of sound signals in the troposphere, J. Acoust. Soc. Am. 18, 274–283 (1946)

    Article  Google Scholar 

  • V.I. Tatarskii: The Effect of the Turbulent Atmosphere on Wave Propagation (Kefer Press, Jerusalem 1971)

    Google Scholar 

  • M.A. Kallistratova: An experimental investigation in the scattering of sound in the turbulent atmosphere, Dokl. Akad. Nauk. SSSR 125, 69–72 (1959)

    Google Scholar 

  • M.A. Kallistratova, I.V. Petenko, R.D. Kouznetsov, S.N. Kulichkov, O.G. Chkhetiani, I.P. Chunchusov, V.S. Lyulyukin, D.V. Zaitseva, N.V. Vazaeva, D.D. Kuznetsov, V.G. Perepelkin, G.A. Bush: Sodar sounding of the atmospheric boundary layer: Review of studies at the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Izv. Atmos. Ocean. Phys. 54, 242–256 (2018)

    Article  Google Scholar 

  • L.G. McAllister, J.R. Pollard, A.R. Mahoney, P.J.R. Shaw: Acoustic sounding – A new approach to the study of atmospheric structure, Proc. IEEE 57, 579–587 (1969)

    Article  Google Scholar 

  • ECMA-108:2010-12: Measurement of High-Frequency Noise Emitted by Information Technology and Telecommunications Equipment (European Computer Manufacturers Association, Geneva 2010)

    Google Scholar 

  • K. Attenborough: Sound propagation in the atmosphere. In: Handbook of Acoustics, 2nd edn., ed. by T.D. Rossing (Springer, New York 2014) pp. 117–155

    Chapter  Google Scholar 

  • O. Reitebuch: SODAR-Signalverarbeitung von Einzelpulsen zur Bestimmung hochaufgelöster Windprofile, Schriftenreihe des Fraunhofer-Instituts Atmosphärische Umweltforschung, Vol. 62 (Shaker, Aachen 1999)

    Google Scholar 

  • F. Beyrich: Mixing height estimation from sodar data – A critical discussion, Atmos. Environ. 31, 3941–3953 (1997)

    Article  Google Scholar 

  • D.N. Asimakopoulos, C.G. Helmis, J. Michopoulos: Evaluation of SODAR methods for the determination of the atmospheric boundary layer mixing height, Meteorol. Atmos. Phys. 85, 85–92 (2004)

    Article  Google Scholar 

  • S. Emeis, M. Türk: Frequency distributions of the mixing height over an urban area from SODAR data, Meteorol. Z. 13, 361–367 (2004)

    Article  Google Scholar 

  • S. Emeis, C. Jahn, C. Münkel, C. Münsterer, K. Schäfer: Multiple atmospheric layering and mixing-layer height in the Inn valley observed by remote sensing, Meteorol. Z. 16, 415–424 (2007)

    Article  Google Scholar 

  • S. Emeis, K. Schäfer, C. Münkel: Surface-based remote sensing of the mixing-layer height – A review, Meteorol. Z. 17, 621–630 (2008)

    Article  Google Scholar 

  • J. Röttger, J. Klostermeyer, P. Czechowsky, R. Rüster, G. Schmidt: Remote sensing of the atmosphere by VHF radar experiments, Naturwissenschaften 65, 285–296 (1978)

    Article  Google Scholar 

  • R.L. Coulter, T.J. Martin: Results from a high-power, high-frequency sodar, Atmos. Res. 20, 257–269 (1986)

    Article  Google Scholar 

  • Y. Ito, Y. Kobori, M. Horiguchi, M. Takehisa, Y. Mitsuta: Development of wind profiling sodar, J. Atmos. Ocean. Technol. 6, 779–784 (1989)

    Article  Google Scholar 

  • D.W. Thomson, R.L. Coulter: Analysis and simulation of phase coherent acdar sounding measurements, J. Geophys. Res. 79, 5541–5549 (1974)

    Article  Google Scholar 

  • M.L. Wesely: The combined effect of temperature and humidity fluctuations on refractive index, J. Appl. Meteorol. 15, 43–49 (1976)

    Article  Google Scholar 

  • R.L. Coulter, K.H. Underwood: Some turbulence and diffusion parameter estimates within cooling tower plumes derived from sodar data, J. Appl. Meteorol. 19, 1395–1404 (1980)

    Article  Google Scholar 

  • K.H. Underwood: Sodar Signal Processing Methods and the Risø-78 Experiment, PhD thesis (Pennsylvania State Univ., University Park 1981)

    Google Scholar 

  • S. Bradley, S. von Hünerbein, T. Mikkelsen: A bistatic sodar for precision wind profiling in complex terrain, J. Atmos. Ocean. Technol. 29, 1052–1061 (2012)

    Article  Google Scholar 

  • S. Bradley, J. Barlow, J. Lalley, C. Halios: A sodar for profiling in a spatially inhomogeneous urban environment, Meteorol. Z. 24, 615–624 (2015)

    Article  Google Scholar 

  • A. Strehz, S. Bradley: Mast comparisons for a new bistatic SODAR design. In: 17th Int. Symp. Adv. Bound.-Layer Remote Sens. (ISARS) Auckland (2014)

    Google Scholar 

  • R. Kouznetsov: The multi-frequency sodar with high temporal resolution, Meteorol. Z. 18, 169–173 (2009)

    Article  Google Scholar 

  • S.G. Bradley: Use of coded waveforms for SODAR systems, Meteorol. Atmos. Phys. 71, 15–23 (1999)

    Article  Google Scholar 

  • C.S. Bonner, M.C.B. Ashley, J.S. Lawrence, J.W.V. Storey, D.M. Luong-Van, S.G. Bradley: Snodar: A new instrument to measure the height of the boundary layer on the Antarctic plateau, Proc. SPIE 7014, 70146I (2008)

    Article  Google Scholar 

  • A.I. Kon, V.I. Tatarskii: The scattered signal frequency spectrum for radio acoustical atmospheric soundings, Izv. Atmos. Ocean. Phys. 16, 142–148 (1980)

    Google Scholar 

  • G. Peters, H. Timmermann, H. Hinzpeter: Temperature sounding in the planetary boundary layer by RASS-system analysis and results, Int. J. Remote Sens. 4, 49–63 (1983)

    Article  Google Scholar 

  • RegTP: Zulassungsvorschrift für Windprofil-Messradaranlagen, RegTP 321 ZV 044, Juli 1999. In: Amtsblatt der Regulierungsbehörde für Telekommunikation und Post, Nr. 1 vom 12.01.2000

    Google Scholar 

  • Directive 2003/10/EC of the European Parliament and of the Council of 6 February 2003 on the Minimum Health and Safety Requirements Regarding the Exposure of Workers to the Risks Arising from Physical Agents (Noise). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02003L0010-20081211, current version (2019), Accessed 08. July 2021

  • Bundes-Immissionsschutzgesetz: Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (BImSchG). (in German http://www.rechtliches.de/info_BImSchG.html) (2017), Accessed 08. July 2021

  • VDI 2058 Part 2: Assessment of Noise with Regard to the Risk of Hearing Damages (Draft) (Beuth, Berlin 2017)

    Google Scholar 

  • S. Bradley, A. Strehz, S. Emeis: Remote sensing winds in complex terrain – A review, Meteorol. Z. 24, 547–555 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Emeis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Emeis, S. (2021). Sodar and RASS. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_23

Download citation

Publish with us

Policies and ethics