Skip to main content
Log in

Studies of the Structure of Glutamate Receptor Ion Channels and the Mechanisms of Their Blockade by Organic Cations

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The structural determinants for blockade of the AMPA and NMDA subtypes of glutamate receptors were studied by analysis of structural-functional relationships in a series of mono- and dicationic compounds. The results showed that the hydrophobic and nucleophilic components of the blocker binding sites are located close to each other in the channel of the NMDA receptor, while they are spatially distant in the channel of the AMPA receptor. Molecular mechanical methods were used to construct models of these channels satisfying these topographic criteria and providing adequate descriptions of the binding of the channel blockers. According to the models, binding of blockers to the NMDA channel occurs in the selective filter of the channel (the N/Q/R site). The nucleophilic region of the AMPA channel is formed by the oxygen atoms of glycine residues in position +2 relative to the selective filter. Identification of the major relationships between the molecular structure of the ion channels of these glutamate receptor subtypes and their blockade by organic cations allows the further synthesis of AMPA and NMDA channel blockers with specified levels of activity and selectivity to be directed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. V. Bol'shakov and S. L. Buldakova, “Comparison of the subunit composition and splice variants of AMPA receptors in neurons of hippocampal field CA1 and the dentate fascia,” Ros. Fiziol. Zh. im. I. M. Sechenova, 85, 1480–1486 (1999).

    Google Scholar 

  2. L. G. Magazanik, “Blockade of ion channels as an approach to studying AMPA receptor subtypes,” Ros. Fiziol. Zh. im. I. M. Sechenova, 84, 994–1005 (1998).

    Google Scholar 

  3. L. G. Magazanik,, S. M. Antonov, and V. E. Gmiro, “Mechanisms for the activation and blockade of glutamate-sensitive postsynaptic membranes,” Biol. Membrany, 1, 130–140 (1984).

    Google Scholar 

  4. L. G. Magazanik, M. V. Samoilova, S. L. Buldakova, K. V. Esin, and V. E. Gmiro, “Selective inhibition of AMPA/kainate receptors of hippocampal interneurons as a new approach to studying inhibitory systems,” Ros. Fiziol. Zh. im. I. M. Sechenova, 83, 19–29 (1997).

    Google Scholar 

  5. L. G. Magazanik, K. V. Bol'shakov, S. L. Buldakova, V. E. Gmiro, N. A. Dorofeeva, N. Ya. Lukomskaya, N. N. Potep'eva, M. V. Samoilova, D. B. Tikhonov, I. M. Fedorova, and E. V. Frolova, “Structural characteristics of ionotropic glutamate receptors, identified by channel blockade,” Ros. Fiziol. Zh. im. I. M. Sechenova, 86, 1138–1151 (2000).

    Google Scholar 

  6. S. M. Antonov, J. W. Johnson, N. Y. Lukomskaya, N. N. Potapyeva, V. E. Gmiro, and L. G. Magazanik, “Novel adamantane derivatives act as blockers of open ligand-gated channels and as anticonvulsants,” Mol. Pharmacol., 47, 558–567 (1995).

    Google Scholar 

  7. S. M. Antonov and J. W. Johnson, “Voltage-dependent interaction of open-channel blockings molecules with gating of NMDA receptors in rat cortical neurons,” J. Physiol. (London), 493, 425–445 (1996).

    Google Scholar 

  8. M. Benveniste and M. L. Mayer, “Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine,” J. Physiol. (London), 483, 367–384 (1995).

    Google Scholar 

  9. K. V. Bolshakov, D. B. Tikhonov, V. E. Gmiro, and L. G. Magazanik, “Different arrangement of hydrophobic and nucleophilic components of channel binding sties in NMDA and AMPA receptor is revealed by channel blockade,” Neurosci. Lett., 291, 101–104 (2000).

    Google Scholar 

  10. P. T. Brackley, D. R. Bell, S. K. Choi, K. Nakanishi, and P. N. Usherwood, “Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins,” J. Pharmacol. Exp. Ther., 266, 1573–1580 (1993).

    Google Scholar 

  11. S. L. Buldakova, V. S. Vorobjev, I. N. Sharonova, M. V. Samoilova, and L. G. Magazanik, “Characterization of AMPA receptor populations in rat brain cells by the use of subunit-specific open channel blocking drug, IÉM-1640,” Brain Res., 94, 261–268 (1999).

    Google Scholar 

  12. N. Burnashev, Z. Zhou, E. Neher, and B. Sakmann, “Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes,” J. Physiol. (London), 485, 403–418 (1995).

    Google Scholar 

  13. N. Burnashev, A. Villaroel, and B. Sakmann, “Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on R/O site residues,” J. Physiol. (London), 496, 165–173 (1996).

    Google Scholar 

  14. R. Dingledine, R. I. Hume, and S. Heinemann, “Structural determinants of barium permeation and rectification in non-NMDA glutamate receptor channels,” J. Neurosci., 12, 4080–4087 (1992).

    Google Scholar 

  15. R. Dingledine, K. Borges, D. Bowie, S. F. Traynelis, “The glutamate receptor ion channels,” Pharmacol. Rev., 51, 8–61 (1999).

    Google Scholar 

  16. D. A. Doyle, J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, and R. MacKinnon, “The structure of the potassium channel: basis of K+ conduction and selectivity,” Science, 280, 69–77 (1998).

    Google Scholar 

  17. A. V. Ferrer-Montiel, J. M. Merino, R. Planells-Cases, W. Sun, and M. Montal, “Structural determinants of the blocker binding site in glutamate and NMDA receptor channels,” Neuropharmacology, 37, 139–147 (1998).

    Google Scholar 

  18. M. Frerking and R. A. Nicoll, “Synaptic kainate receptors,” Curr. Opin. Neurobiol., 10, 342–351 (2000).

    Google Scholar 

  19. J. R. P. Geiger, T. Melcher, D. S. Koh, B. Sakmann, P. H. Seeburg, P. Jonas, and H. Monyer, “Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS,” Neuron, 15, 193–204 (1995).

    Google Scholar 

  20. S. Herlitze, M. Raditsch, J. P. Ruppersberg, W. Jahn, H. Monyer, R. Schoepfer, and V. Witzemann, “Agriotoxin detects molecular differences in AMPA receptor channels,” Neuron, 10, 1131–1140 (1993).

    Google Scholar 

  21. T. Isa, M. Iino, and S. Ozawa, “Spermine blocks synaptic transmission mediated by Ca2+-permeable AMPA receptors,” Neuroreport, 7, 689–692 (1996).

    Google Scholar 

  22. Z. Li and H. A. Scheraga, “Structure and free energy of complex thermodynamic systems,” J. Mol. Struct., 179, 333–352 (1988).

    Google Scholar 

  23. J. F. MacDonald, M. C. Bartlett, I. Mody, P. Pahapill, J. N. Reynolds, M. W. Salter, J. H. Schneiderman, and P. S. Pennefather, “Actions of ketamine, phenylcyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones,” J. Physiol. (London), 432, 483–508 (1991).

    Google Scholar 

  24. L. G. Magazanik, S. L. Buldakova, M. V. Samoilova, V. E. Gmiro, I. R. Mellor, and P. N. R. Usherwood, “Block of open channels of recombinant AMPA receptors and native AMPA/kainate receptors by adamantane derivatives,” J. Physiol. (London), 505, 655–663 (1997).

    Google Scholar 

  25. L. J. Martin, C. D. Blackstone, A. I. Levey, R. L. Huganir, and D. L. Price, “AMPA glutamate receptor subunits are differentially distributed in rat brain,” Neurosci., 53, 327–358 (1993).

    Google Scholar 

  26. H. Mori, H. Masaki, T. Yamakura, and M. Mishina, “Identification by mutagenesis of a Mg2+-block site of the NMDA receptor channel,” Nature, 358, 673–675 (1992).

    Google Scholar 

  27. C. G. Parsons, V. A. Panchenko, V. O. Pinchenko, A. Y. Tsyndrenko, and O. A. Krishtal, “Comparative patch-clamp studies with freshly dissociated rat hippocampal and striatal neurons on the NMDA receptor antagonistic effects of amantadine and memantine,” Eur. J. Neurosci., 8, 446–454 (1996).

    Google Scholar 

  28. M. V. Samoilova, S. L. Buldakova, V. S. Vorobjev, I. N. Sharonova, and L. G. Magazanik, “Open channel blocking drug, IÉM-1640, reveals functionally distinct α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in rat brain neurons,” Neurosci., 94, 261–268 (1999).

    Google Scholar 

  29. M. V. Samoilova, E. V. Frolova, N. N. Potapjeva, I. M. Fedorova, V. A. Gmiro, and L. G. Magazanik, “Channel blocking drugs as tools to study glutamate receptors in insect muscles and molluscan neurons,” Invertebr. Neurosci., 3, 117–126 (1997).

    Google Scholar 

  30. M. Sheng and D. T. Pak, “Glutamate receptor anchoring proteins and the molecular organization of excitatory synapses,” Ann. N.Y. Acad. Sci., 30, No. 868, 483–493 (1999).

    Google Scholar 

  31. A. I. Sobolevsky, S. G. Koshelev, and B. I. Khodorov, “Probing of NMDA channels with fast blockers,” J. Neurosci., 19, 10611–10626 (1999).

    Google Scholar 

  32. G. T. Swanson, S. K. Kamboj, and S. J. Cull-Candy, “Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition,” J. Neurosci., 17, 58–69 (1997).

    Google Scholar 

  33. D. B. Tikhonov, B. S. Zhorov, and L. G. Magazanik, “Intersegment hydrogen bonds as possible structural determinants of the N/Q/R site in glutamate receptors,” Biophys. J., 77, 1914–1926 (1999).

    Google Scholar 

  34. D. B. Tikhonov, M. V. Samoilova, S. L. Buldakova, V. E. Gmiro, and L. G. Magazanik, “Voltage-dependent block of native AMPA receptor channels by dicationic compounds,” Brit. J. Pharmacol., 129, 265–2 (2000).

    Google Scholar 

  35. A. Villarroel, N. Burnashev, and B. Sakmann, “Dimensions of the narrow portion of a recombinant NMDA receptor channel,” Biophys. J., 68, 866–875 (1995).

    Google Scholar 

  36. V. S. Vorobjev, “Vibrodissociation of sliced mammalian nervous tissue,” J. Neurosci. Meth., 38, 145–150 (1991).

    Google Scholar 

  37. M. S. Washburn and R. Dingledine, “Block of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins,” J. Pharmacol. Exp. Ther., 278, 666–678 (1996).

    Google Scholar 

  38. S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Chio, G. Alagona, S. Profeta, and P. K. Weiner, “A new force field for molecular mechanical simulation of nucleic acids and proteins,” J. Amer. Chem. Assoc., 106, 765–784 (1984).

    Google Scholar 

  39. K. Williams, A. J. Pahk, K. Kashiwagi, T. Masiko, N. D. Nguyen, and K. Igarishi, “The selective filter of the N-methyl-D-aspartate receptor: a tryptophan residue controls block and permeation of Mg2+,” Mol. Pharmacol., 53, 933–941 (1998).

    Google Scholar 

  40. D. J. Wyllie, P. Behe, M. Nassar, R. Schoepfer, and D. Colquhoun, “Single-channel currents from recombinant NMDA NR1A/NR2D receptors expressed in Xenopus oocytes,” Proc. Roy. Soc., B263, 1079–1086 (1996).

    Google Scholar 

  41. B. S. Zhorov, “Vector method for calculating derivatives of energy of atom-atom interactions of complex molecules according to generalized coordinates,” J. Struct. Chem., 22, 4–8 (1981).

    Google Scholar 

  42. B. S. Zhorov and V. S. Ananthanarayanan, “Structural model of synthetic Ca2+ channel with bound Ca2+ ions and dihydropyridine ligand,” Biophys. J., 70, 22–37 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magazanik, L.G., Tikhonov, D.B., Bol'shakov, K.V. et al. Studies of the Structure of Glutamate Receptor Ion Channels and the Mechanisms of Their Blockade by Organic Cations. Neurosci Behav Physiol 33, 237–246 (2003). https://doi.org/10.1023/A:1022147230445

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022147230445

Navigation