Skip to main content
Log in

ESR study of mechanism of polyaniline conductivity

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Powders, solutions, and films of polyanilines synthesized by three methods of aniline oxidative polymerization were studied by ESR, optical spectroscopy, and X-ray diffractometry. Polyanilines under study were shown to differ in the degree of polaron delocalization along solitary polymer chains in a solution, the packing density in powders and films, the mobility of polarons, and the degree of crystallinity. The conductivity of films correlates only with the characteristic time (τ) of O2 diffusion into amorphous regions of the films. These times were determined from the kinetics of changes in the ESR line intensities after admission of O2. The higher the film conductivity, the greater the τ value and the sizes of the amorphous regions. The electroconductivity of the films is likely determined by the mobility of polarons in boundary regions between the amorphous regions rather than within the amorphous regions: the larger the sizes of the amorphous regions, the less the number of low-conducting contacts between the amorphous regions and the higher the conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Intern. Conf. on Science and Technology of Synthetic Metals, (a) July 14–21, 2000, Gastein, Austria, Book of Abstracts, Gastein, 2000, (b) July 28–August 2, 1996, Snowbird, Utah, in Synthetic Metals, 1997, 84, No. 1–3, (c) July 24–29, 1994, Seoul, Korea, in Synthetic Metals, 1995, 68-70.

  2. A. J. Epstein, J. M. Ginder, F. Zuo, H. S. Woo, D. B. Tanner, A. F. Richter, M. Angelopolos, W. S. Huang, and A. G. Mac Diarmid, Synth. Met., 1987, 21, 63.

    Google Scholar 

  3. A. V. Kulikov, Ya. L. Kogan, and L. S Fokeeva, Synth. Met., 1995, 69, 223.

    Google Scholar 

  4. O. Chauvet, S. Paschen, L. Forro, L. Zuppiroli, P. Bujard, K. Kai, and W. Werner, Synth. Met., 1994, 63, 115; (b) Y. Furukava, J. Phys. Chem., 1996, 100, 15644; (c) K. Mizoguchi and S. Kuroda, in Handbook of Organic Conductive Molecules and Polymers, Ed. H. S. Nalva, J. Wiley and Sons, Chichester-New York, 1997, 3, 231.

    Google Scholar 

  5. M. E. Josefowich, R. Laversanne, H. H. S. Javadi, A. J. Epstein, J. P. Pouget, X. Tang, and A. G. MacDiarmid, Phys. Rev., B, 1989, 39, 12958.

    Google Scholar 

  6. B. Z. Lubentsov, O. N. Timofeeva, S. V. Saratovskikh, V. I. Krinichnyi, A. E. Pelekh, V. I. Dmitrienko, and M. L. Khidechel, Synth. Met., 1992, 47, 187.

    Google Scholar 

  7. J. Stejskal, A. Riede, D. Hlavata, J. Prokes, M. Helmsted, and P. Holler, Synth. Met., 1998, 96, 55.

    Google Scholar 

  8. D. Djurado, Y. F. Niccolau, I. Dalsegg, and E. J. Samuelsen, Synth. Met., 1997, 84, 121.

    Google Scholar 

  9. Z. H. Wang, H. H. S. Javadi, A. Ray, A. G. MacDiarmid, and A. J. Epstein, Phys. Rev., B, 1990, 42, 5411.

    Google Scholar 

  10. Z. H. Wang, C. Li, E. M. Scherr, A. G. MacDiarmid, and A. J. Epstein, Phys. Rev., B, 1992, 45, 4190.

    Google Scholar 

  11. B. Beau, J. P. Travers, and E. Banka, Synth. Met., 1999, 101, 7772.

    Google Scholar 

  12. I. Kogan, L. Fokeeva, I. Shunina, I. Estrin, L. Kasumova, M. Kaplunov, G. Davidova, and E. Knerelman, Synth. Metals, 1999, 100, 3.

    Google Scholar 

  13. E. R. Holand, S. J. Pomfret, P. A. Adams, and A. P. Monkman, J. Phys. Condens. Matter, 1996, 8, 2991.

    Google Scholar 

  14. S. Folch, A. Gruger, A. Regis, and Ph. Colomban, Synth. Met., 1996, 81, 221.

    Google Scholar 

  15. Z. H. Wang, A. R. MacDiarmid, A. G. MacDiarmid, and A. P. Epstein, Phys. Rev., B., 1991, 43, 4373.

    Google Scholar 

  16. A. V. Kulikov, V. R. Bogatyrenko, O. V. Belonogova, and L. S. Fokeeva, Izv. Akad. Nauk, Ser. Khim., 1999, 2293 [Russ. Chem. Bull., 1999, 48, 2267 (Engl. Transl.)].

    Google Scholar 

  17. A. V. Kulikov, V. R. Bogatyrenko, O. V. Belonogova, and L. S. Fokeeva, Izv. Akad. Nauk, Ser. Khim., 2000, 1762 [Russ. Chem. Bull., Int. Ed., 2000, 49, 1742].

  18. P. K. Kahol, A. J. Dyakonov, and B. J. McCormick, Synth. Met., 1997, 84, 691; 89, 17.

    Google Scholar 

  19. F. D. Dyson, Phys. Rev., 1955, 98, 349.

    Google Scholar 

  20. A. Alix, V. Lemoine, M. Nechtschein, J. P. Traders, and C. Meaner, Synth. Met., 1989, 29, 457.

    Google Scholar 

  21. V. I. Krinichnyi, S. D. Chemerisov, and Ya. S. Lebedev, Phys. Rev., B, 1997, 55, 1623.

    Google Scholar 

  22. E. Houze and M. Nechtschein, Phys. Rev., B, 1996, 53, 14309.

    Google Scholar 

  23. W. Jost, Diffusion in Solids, Liquids and Gases, Academic Press, New York, 1952.

    Google Scholar 

  24. E. T. Denisov, Kinetika gomogennykh khimicheskikh reaktsii [Kinetics of Homogeneous Chemical Reactions], Vysshaya Shkola, Moscow, 1978, 368 pp. (in Russian).

    Google Scholar 

  25. W. J. Koros and M. Moaddeb, Gas Barrier Polymers, in The Polymeric Materials Encyclopedia, Ed. J. C. Salamone, CRC Press, Boca Raton, 1996; (b) L. M. Robeson, Gas Separation Membranes, Ed. J. C. Salamone, CRC Press, Boca Raton, 1996.

    Google Scholar 

  26. M.-C. Bernard, A. Hugot-Le Coff, Vu Thi Bich, and Wen Zeng, Synth. Met., 1996, 81, 215.

    Google Scholar 

  27. Yu. M. Volfkovich, A. G. Sergeev, T. K. Zolotova, S. D. Afanasiev, O. N. Efimov, and E. P. Krinichnaya, Electrochim. Acta, 1999, 44, 1543.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulikov, A.V., Bogatyrenko, V.R., Belonogova, O.V. et al. ESR study of mechanism of polyaniline conductivity. Russian Chemical Bulletin 51, 2216–2223 (2002). https://doi.org/10.1023/A:1022127100633

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022127100633

Navigation