Skip to main content
Log in

Thermodynamic Properties and Decomposition of Lithium Hexafluoroarsenate, LiAsF6

  • Published:
Inorganic Materials Aims and scope

Abstract

The heat capacity of lithium hexafluoroarsenate is determined in the temperature range 50–750 K by adiabatic and differential scanning calorimetry techniques. The thermodynamic properties of LiAsF6 under standard conditions are evaluated: C p 0(298.15 K) = 162.5 ± 0.3 J/(K mol), S 0(298.15 K) = 173.4 ± 0.4 J/(K mol), Φ0(298.15 K) = 81.69 ± 0.20 J/(K mol), and H 0(298.15 K) – H 0(0) = 27340 ± 60 J/mol. The C p(T) curve is found to contain a lambda-type anomaly with a peak at 535.0 ± 0.5 K, which is due to the structural transformation from the low-temperature, rhombohedral phase to the high-temperature, cubic phase. The enthalpy and entropy of this transformation are 5.29 ± 0.27 kJ/mol and 10.30 ± 0.53 J/(K mol), respectively. The thermal decomposition of LiAsF6 is studied. It is found that LiAsF6 decomposes in the range 715–820 K. The heat of decomposition, determined in the range 765–820 K using a sealed crucible and equal to the internal energy change ΔU r(T), is 31.64 ± 0.08 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gavrichev, K.S., Gorbunov, V.E., Golushina, L.N., et al., Low-Temperature Heat Capacity of RbAsF6, Neorg. Mater., 1996, vol. 32, no. 7, pp. 878–880 [Inorg. Mater. (Engl. Transl.), vol. 32, no. 7, pp. 778–780].

    Google Scholar 

  2. Gavrichev, K.S., Gorbunov, V.E., Golushina, L.N., et al., Low-Temperature Heat Capacity of Cesium Hexafluoroarsenate, Zh. Neorg. Khim., 1997, vol. 42, no. 1, pp. 96–98.

    Google Scholar 

  3. Gavrichev, K.S., Gorbunov, V.E., and Sharpataya, G.A., Calorimetric Study of Cesium and Rubidium Hexafluoroarsenates, 14th IUPAC Conf. on Chemical Thermodynamics, Osaka, 1996, p. 217.

  4. Gorbunov, V.E., Gurevich, V.M., and Gavrichev, K.S., Adiabatic Microcalorimeter with an Aneroid-Type Cryostat, Zh. Fiz. Khim., 1982, vol. 56, no. 1, pp. 235–237.

    Google Scholar 

  5. Iorish, V.S., Belov, G.V., and Yungman, V.S., Windows Compatible IVTANTERMO Package for Applied Thermodynamic Analysis, Preprint of Joint Inst. of High Temperatures, Russ. Acad. Sci., Moscow, 1998, no. 8–415.

  6. Lazarev, V.B., Izotov, A.D., Gavrichev, K.S., and Shebershneva, O.V., Fractal Model of Heat Capacity for Substances with Diamond-like Structures, Thermochim. Acta, 1995, vol. 269/270, pp. 109–116.

    Google Scholar 

  7. Kemmitt, R.D.W., Russell, D.R., and Sharp, D.W.A., The Structural Chemistry of Complex Fluorides of General Formula AIBVF6, J. Chem. Soc., 1963, vol. 9, pp. 4408–4413.

    Google Scholar 

  8. Gavrichev, K.S., Sharpataya, G.A., Golushina, L.N., et al., Heat Capacity and Thermodynamic Properties of Lithium Hexafluorophosphate, Zh. Neorg. Khim., 2002, vol. 47, no. 7, pp. 1048–1051.

    Google Scholar 

  9. Shebershneva, O.V., Izotov, A.D., Gavrichev, K.S., and Lazarev, V.B., A Method for Treating Low-Temperature Calorimetry Data with Regard to the Multifractality of Atomic Vibrations, Neorg. Mater., 1996, vol. 32, no. 1, pp. 36–40 [Inorg. Mater. (Engl. Transl.), vol. 32, no. 1, pp. 28–32].

    Google Scholar 

  10. Gorbunov, V.E., Gavrichev, K.S., and Bakum, S.I., Thermodynamic Properties of LiAlH4 from 12 to 320 K, Zh. Neorg. Khim., 1981, vol. 26, no. 2, pp. 311–314.

    Google Scholar 

  11. Gorbunov, V.E., Gavrichev, K.S., Zalukaev, V.L., et al., Low-Temperature Heat Capacity of Hexagonal (α) and Tetragonal (β) Lithium Iodate Polymorphs, Zh. Fiz. Khim., 1982, vol. 56, no. 11, pp. 1121–1124.

    Google Scholar 

  12. Zalukaev, V.L., Gorbunov, V.E., Sharpataya, G.A., et al., Heat Capacity and Thermodynamic Properties of Lithium Perchlorate, Zh. Neorg. Khim., 1981, vol. 26, no. 4, pp. 899–901.

    Google Scholar 

  13. Gorbunov, V.E., Gavrichev, K.S., Zalukaev, V.L., et al., Heat Capacity and Phase Transition of Lithium Borohydride, Zh. Neorg. Khim., 1984, vol. 29, no. 9, pp. 2333–2337.

    Google Scholar 

  14. Gorbunov, V.E., Gavrichev, K.S., Totrova, G.A., et al., Heat Capacity and Thermodynamic Properties of Lithium Borofluoride from 10 to 340 K, Zh. Neorg. Khim., 1993, vol. 38, no. 2, pp. 217–219.

    Google Scholar 

  15. Lawless, E.W., Wiegand, C.J.W., Mizumoto, Yu., and Weis, C., Lithium Hexafluoroarsenate and Hexafluoroarsenic Acid, Inorg. Chem., 1971, vol. 10, no. 5, pp. 1084–1086.

    Google Scholar 

  16. Ippolitov, E.G., Maifat, M.A., and Zhigarnovskii, B.M., Properties of Alkali Hexafluorophosphates and Hexafluoroarsenates, V Vsesoyuznyi simpozium po khimii neorganicheskikh ftoridov (V All-Union Symp. on the Chemistry of Inorganic Fluorides), Dnepropetrovsk, 1978, p. 132.

  17. Gavritchev, K.S., Sharpataya, G.A., Smagin, A.A., et al., Calorimetric Study of Thermal Decomposition of Lithium Hexafluorophosphate, J. Therm. Anal. Cal. (in press).

  18. Gurevich, V.M., Gorbunov, V.E., Gavrichev, K.S., and Khodakovskii, I.L., Calorimeter for Heat Capacity Measurements from 50 to 300 K and the Low-Temperature Heat Capacity of Kogarkoite, Na3SO4F, Geokhimiya, 1999, no. 4, pp. 423–434.

    Google Scholar 

  19. Parsonage, N. and Staveley, L., Disorder in Crystals, Oxford: Oxford Univ. Press, 1978. Translated under the title Besporyadok v kristallakh, Moscow: Mir, 1982, part 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrichev, K.S., Sharpataya, G.A., Gorbunov, V.E. et al. Thermodynamic Properties and Decomposition of Lithium Hexafluoroarsenate, LiAsF6 . Inorganic Materials 39, 175–182 (2003). https://doi.org/10.1023/A:1022102914631

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022102914631

Keywords

Navigation