Skip to main content
Log in

Stratigraphic Distribution of Lignite-Derived Atmospheric Deposits in Forest Soils of the Upper Lusatian Region, East Germany

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Atmospheric fly ash emissions from lignite-fired power plantsin the Upper Lusatian and Turówan mining districts stronglyaffected large forest areas along the German-Polish border. Afield study was conducted in old spruce stands (Piceaabies (L.) Karst.) to assess the stratigraphic distributionof fly ash in the forest floor and mineral topsoil in the St. Marienthal forest area in the eastern part of Saxony,Germany. This forest area is subjected to long-termatmospheric depositions by two German and one Polish powerplants since the early 1900s. The three study sites arelocated along a fly ash deposition gradient of 3, 6 and 15 kmfrom the power plant in Turów (Sites Ia, II and III,respectively). An additional site (Site Ib) at a distance of 3 km from Turów was chosen to study the influence of vegetationtype on fly ash deposition intensity in forest soils. Samplesof the humic layer (Oi (L), Oe (F) and Oa (H) horizons) andmineral soil (0–10 cm) were taken in Spring and Fall 1999 andanalysed for their ferromagnetic susceptibility and total ashcontent. Particle size distribution, magnetic susceptibilityof individual size fractions, scanning electron microscopy(SEM), and energy dispersive X-ray microanalysis (EDX) wereperformed on selected samples to evaluate the origin ofmineral particles found in the forest floor. High magneticsusceptibility of the Oa and Oe horizons is a result of thelong-term accumulation of lignite-derived atmospheric depositsin the forest floors of the studied area. Pure conifer stands(year-round filtration of airborne pollutants) resulted inhigher inputs of ferromagnetic fly ash particles in forestsoils. Unusually high total ash contents for humic horizons(up to 77%) were determined in the Oa and Oe horizons atSites Ia and IIb, indicating the need for a new classificationsystems for the organic layer in forest soils near coal-firedpower plants. SEM revealed 4 typical phases of persistent flyash deposits formed by combustion of Lusatian lignite: (1) iron-containing `stable glasses’, (2) aluminium-iron-silicate-minerals,(3) slag fragments and (4) lignite-derived fossilcarbon. Particle size analysis, magnetic susceptibilitymeasurements and SEM-EDX techniques indicated that a greatportion of the mineral particles found in the humic horizonsof forests soils are from atmospheric sources. Fly ashaccumulation consisting of ferromagnetic minerals contributesmainly to the 125–63 and <63 μm fractions in soils. EDXanalysis revealed that atmospheric input of lignite-derivedfly ash increases the contents of the following ecologicalrelevant elements in soils: carbon, iron, aluminium, calcium,potassium, sulphur, titanium and sodium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano, D. C., Woodford, T. A. and Ciravolo, T. G.: 1978, ‘Growth and elemental composition of corn and bean seedlings as influenced by soil application of coal ash’, J. Environ. Qual. 7, 416–425.

    Google Scholar 

  • Adriano, D. C., Page, A. L., Elseewi, A. A., Chang, A. C. and Staughan, I.: 1980, ‘Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: A review’, J. Environ. Qual. 9, 333–344.

    Google Scholar 

  • Arbeitskreis Standortkartierung: 1996, Forstliche Standortaufnahme, 5th ed., IHW-Verlag, Eching/ München.

    Google Scholar 

  • Braun-Blanquet, J.: 1964, Pflanzensoziologie-Grundzüge der Vegetationskunde, 3rd ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Carlson, C. L. and Adriano, D. C.: 1993, ‘Environmental impacts of coal combustion residues’, J. Environ. Qual. 22, 227–247.

    Google Scholar 

  • Chang, A. C., Lund, L. J., Page, A. L. and Warneke, J. E.: 1977, ‘Physical properties of fly ashamended soils’, J. Environ. Qual. 6, 267–270

    Google Scholar 

  • Davison, R. L., Natusch, D. F. S., Wallace, J. R. and Evans Jr., C. A.: 1974, ‘Trace elements in fly ash: Dependence of concentration on particle size’, Environ. Sci. Technol. 8, 1107–1113.

    Google Scholar 

  • Dearing, J.: 1994, Environmental Magnetic Susceptibility Using the Barington MS2 System, Chi Publishing, Kenilworth, England.

    Google Scholar 

  • Deutsch-Polnische Kommission für Umweltschutz: 1995, Kraftwerke und Tagebaue beiderseits der Deutsch-Polnischen Grenze, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (ed.), Bonn, Germany.

    Google Scholar 

  • Dunger, W., Dunger, I., Engelmann, H.-D. and Schneider, R.: 1972, ‘Untersuchungen zur Langzeitwirkung von Industrie-Emissionen auf Böden, Vegetation und Bodenfauna des Neissetals bei Ostritz/Oberlausitz’, Abh. Ber. Naturkundemus. Görlitz 47(3), 1–40.

    Google Scholar 

  • Huhn, G., Schulz, H., Stärk, H. J., Tölle, R. and Schüürmann, G.: 1995, ‘Evaluation of regional heavy metal deposition by multivariate analysis of element contents in pine tree barks’, Water, Air, and Soil Pollut. 84, 367–383.

    Google Scholar 

  • Katzur, J., Strzyszcz, Z., Tölle, R. and Liebner, F.: 1998, ‘Magnetisches Eisen als Tracer für die Bestimmung der Homogenität von Boden-Asche-Gemischen bei der Melioration extrem saurer Kippböden’, Archives of Environ. Prot. 24, 83–93.

    Google Scholar 

  • Klein, D. H., Andren, A. W., Carter, J. A., Emery, J. F., Feldman, C., Fulkerson, W., Lyon, W. S., Ogle, J. C., Talmi, Y., Van Hook, R. I. and Bolton, N.: 1975, ‘Pathways of thirty-seven trace elements through coal-fired power plants’, Environ. Technol. 9, 973–977.

    Google Scholar 

  • Klose, B. and Klose, D.: 1997, Analyse der Umweltschäden und Erstellung einer Nutzungskonzeption für den Klosterhof St. Marienthal/Sachsen, Deutsche Bundesstiftung Umwelt (ed.), Osnabrück, Germany.

    Google Scholar 

  • Klose, S., Koch, J., Bäucker, E. and Makeschin, F.: 2001, ‘Indicative properties of fly-ash affected forest soils in Northeastern Germany’, J. Plant Nutr. Soil Sci. 164, 561–568.

    Google Scholar 

  • Kopp, D. and Schwanecke, W.: 1994, ‘Standörtlich-naturräumliche Grundlagen ökologiegerechter Forstwirtschaft’, Deutscher Landwirtschaftsverlag, Berlin.

    Google Scholar 

  • Mullins, C. E.: 1977, ‘Magnetic susceptibility of the soil and its significance in soil science - A review’, J. Soil Sci. 28, 223–246.

    Google Scholar 

  • Natusch, D. F. S., Bauer, C. F., Matusiewicz, H., Evens, C. A., J. Baker, Loh, A., Linton, R. W. and Hopke, P. K.: 1975, ‘Characterization of Trace Elements in Fly Ash’, in T. E. Hutchison (ed.), Proc. of Int. Conf. on Heavy Metals in Environ., Toronto, Ontario, Canada, Vol. 2, Part 2, pp. 553–575.

  • Neumeister, H., Peklo, P. and Niehus, B.: 1997, ‘Umweltbelastungen in der Region Leipzig-Halle-Bitterfeld und deren Bewertung: Immissionsbedingte Stoffeinträge’, in R. Feldmann, H. Auge, J. Flachowsky, S. Klotz and R. Krönert (eds.), Regeneration und Nachhaltige Landnutzung-Konzepte für Belastete Regionen, Springer-Verlag, Berlin, pp. 35–41.

    Google Scholar 

  • Rösler, H. J.: 1981, Lehrbuch der Mineralogie, Deutscher Verlag für Grundstoffindustrie, Leipzig.

  • Rumpel, C., Knicker, H., Kögel-Knabner, I., Skjiemstad, J. O. and Hüttl, R. F.: 1998a, ‘Airborne contamination of immature soil (Lusatian mining district) by lignite-derived materials: Its detection and contribution to the soil organic matter budget’, Water, Air, and Soil Pollut. 105, 481–492.

    Google Scholar 

  • Rumpel, C., Knicker, H., Kögel-Knabner, I., and Hüttl, R. F.: 1998b, ‘Types and chemical composition of organic matter in reforested lignite-rich mine soils’, Geoderma 86, 123–142.

    Google Scholar 

  • Schaaf, W., Neumann, C. and Hüttl, R. F.: 2001, ‘Actual cation exchange capacity in lignite containing pyritic mine soils’, J. Plant Nutr. Soil Sci. 164, 77–78.

    Google Scholar 

  • Schlichting, E., Blume, H.-P. and Stahr, K.: 1995, Bodenkundliches Praktikum, Blackwell-Wissenschafts-Verlag, Berlin, Wien.

    Google Scholar 

  • Soil Survey Staff: 1996, Keys to Soil Taxonomy, 7th ed., Natural Resources Conservation Service, USDA, Washington, DC.

    Google Scholar 

  • Strzyszcz, Z.: 1991, ‘Ferromagnetism of soils in some polish national parks’, Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 66, 1119–1122.

    Google Scholar 

  • Strzyszcz, Z.: 1993, ‘Magnetic Susceptibility of Soils in the Areas Influenced by Industrial Emissions’, in R. Schulin, A. Desaules, R. Webster, and B. v. Steiger (eds), Soil Monitoring. Early Detection and Surveying of Soil Contamination and Degratation, Birkhäuser Verlag, Berlin, pp. 257–269.

    Google Scholar 

  • Tölle, R.: 1994, ‘Eine Meßanordnung zur Bestimmung der magnetischen Suszeptibilität von Bodenproben’, Archium Ochrony Srodowiska 3-4, 145–150.

    Google Scholar 

  • Tölle, R. and Raasch, H.: 1989, ‘Zur Anwendung eines hochfrequenten Messverfahrens für den Nachweis von ferromagnetischem Eisen in der Umwelt’, Wiss. Zeitschr. Humboldt University Berlin 1, 45–47.

    Google Scholar 

  • Weisdorfer, M.: 1999, ‘Einfluß unterchiedlicher Schwefel-und Staubimmissionen in der Vergangenheit auf die chemische Entwicklung von Humusauflagen und Mineralböden in Kiefernwaldökosystemen im nordostdeutschen Tiefland’, Cottbuser Schriften zu Bodenschutz und Rekultivierung Vol. 4, Technische Universität Cottbus, 214 pp.

    Google Scholar 

  • Williams, R. D. and Cooper, J. R.: 1990, ‘Locating soil bounderies using magnetic susceptibility’, Soil Sci. 150, 889–895.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klose, S., Tölle, R., Bäucker, E. et al. Stratigraphic Distribution of Lignite-Derived Atmospheric Deposits in Forest Soils of the Upper Lusatian Region, East Germany. Water, Air, & Soil Pollution 142, 3–25 (2003). https://doi.org/10.1023/A:1022075130048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022075130048

Navigation