Skip to main content

Changes in Key Physical Soil Properties of Post-pyrogenic Forest Ecosystems: a Case Study of Catastrophic Fires in Russian Sub-boreal Forest

  • Chapter
  • First Online:
Advances in Understanding Soil Degradation

Part of the book series: Innovations in Landscape Research ((ILR))

  • 1422 Accesses

Abstract

In this chapter, the physical properties of soils were determined after forest fires in pine forests near the city of Togliatti (Russia) in 2010. The aim of the study was to assess (1) what part organic matter of pyrogenic origin played in the formation of the fire-affected clay fraction and (2) the degree of hydrophobicity of the soil under the influence of pyrogenic exposure. The soil parameters studied were the particle size distribution, solid-phase density, specific surface area, contact angle of soil wetting, soil organic matter content and air-dry moisture. Two methods of particle size distribution were compared: laser diffraction and classical sedimentation methods. The sedimentation method revealed a higher clay content due to underestimation of the density and an increase in black carbon components, rather than an actual increase in very fine earth particles. This method enabled the effect of the pseudo-fraction to be observed, when particles of organic matter, including components of black carbon, partially form a clay fraction that was not there previously. While the set of methods proposed has proven suitable to assess changes in post-fire soils, there is a need to harmonise the methods of particle size distribution. The electrophysical profiling effectively identified the vertical heterogeneity of the soil layers. The contact angle of wetting showed an increase in hydrophobicity in the upper horizons of the soil after fires, especially crown fires. These expose soil to surface runoff and thus a higher risk of erosion. Further, deeper interdisciplinary research is needed to determine soil quality and degradation risks in fire-prone forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abakumov E, Tomashunas V (2016) Electric resistivity of soils and upper permafrost layer of the Gydan peninsula. Polarforschung 86 (1):27–34. https://epic.awi.de/id/eprint/42692/1/Polarforschung_86-1_27-34.pdf

  • Atkin AS, Atkina LI (1985) Stocks of soil vegetation combustible materials in pine forests. Forest fires and their consequences: collection of works. ILID, Krasnoyarsk, pp 92–101 (Aткин A.C., Aткинa Л.И. Зaпacы нaпoчвeнныx гopючиx мaтepиaлoв в cocнякax. Лecныe пoжapы и иx пocлeдcтвия. Кpacнoяpcк, ИлиД CO AH CCCP

    Google Scholar 

  • Bachmann J, Woche SK, Goebel WO, Kirkcham MB, Horton R (2003) Extended methodology for determining wetting properties of porous media. Water Resour Res 39(12). https://doi.org/10.1029/2003WR002143

  • Balch JK, Bradley BA, Abatzoglou JT, Nagy RC, Fusco EJ, Mahood AL (2017) Human-started wildfires expand the fire niche across the United States. Proc Natl Acad Sci USA 114(11):2946–2951. https://doi.org/10.1073/pnas.1617394114

    Article  CAS  Google Scholar 

  • Basso M, Vieira DCS, Ramos TB, Mateus M (2019) Assessing the adequacy of SWAT model to simulate postfire effects on the watershed hydrological regime and water quality. Land Degrad Develop 31(5):619–631. https://doi.org/10.1002/ldr.3476

    Article  Google Scholar 

  • Bezkorovaynaya IN, Ivanova GA, Tarasov PA, Bogorodskaya AV (2005) Pyrogenic soil transformation in pine forests of the middle taiga in Krasnoyarsk Region. Sib Ecol J 1:143–152 (Бeзкopoвaйнaя ИH, Ивaнoвa ГA, Tapacoв ПA и дp. Пиpoгeннaя тpaнcфopмaция пoчв cocнякoв cpeднeй тaйги Кpacнoяpcкoгo кpaя. Cибиpcкий экoлoгичecкий жypнaл)

    Google Scholar 

  • Blochin AN, Kulizhsky SP (2009) Assessment of laser diffractometry method application in particle size distribution determination. Tomsk State University. Biology 1:37–43 (Блoxин A.H., Кyлижcкий C.П. Oцeнкa пpимeнeния мeтoдa лaзepнoй дифpaктoмeтpии в oпpeдeлeнии гpaнyлoмeтpичecкoгo cocтaвa пoчв. Becтник Toмcкoгo гocyдapcтвeннoгo yнивepcитeтa. Биoлoгия № 1. C. 37–43)

    Google Scholar 

  • Bogdanov VV, Prokushkin AS, Prokushkin SG (2009) Surface fires’ influence on the soil organic matter mobility in larch forests of a cryolithic zone of Middle Siberia. KrasGAU 2:88–93 (Бoгдaнoв B.B., Пpoкyшкин A.C., Пpoкyшкин C.Г. Bлияниe пoвepxнocтныx пoжapoв нa пoдвижнocть opгaничecкoгo вeщecтвa пoчвы в лиcтвeнничникax кpиoлитoзoны Cpeднeй Cибиpи. КpacГAУ 2: 88–93)

    Google Scholar 

  • Bykova GS (2014a) Contact angle of solid phase surface wetting of typical chernozems. Mater Rus Soil Stud 8 (35):125–130 (Быкoвa Г.C. Кpaeвoй yгoл cмaчивaния пoвepxнocти твepдoй фaзoй чepнoзeмoв типичныx. Maтepиaлы пo изyчeнию pyccкиx пoчв 8 (35): 125–130)

    Google Scholar 

  • Bykova GS (2014b) Contact angle of soil wetting of main morphones and morphemes of the texturally differentiated sod podzolic soil. Proc Int Sci Conf XVII Docuchaev’s conference for youth scientists “New milestones in soil science development: modern technologies as a cognition means”, 3–6 March 2014, St. Petersburg, pp 31–32 (Быкoвa Г.C. Кpaeвoй yгoл cмaчивaния ocнoвныx мopфoнoв и мopфeм тeкcтypнo-диффepeнциpoвaннoй дepнoвo-пoдзoлиcтoй пoчвы. XVII Дoкyчaeвcкaя кoнфepeнция для мoлoдыx yчeныx «Hoвыe вexи в paзвитии пoчвoвeдeния: coвpeмeнныe тexнoлoгии кaк cpeдcтвo пoзнaния», 3–6 мapтa 2014 г., Caнкт-Пeтepбypг, 31–32). http://www.dokuchaevskie.ru/wp-content/uploads/2018/04/MDH2014-11.pdf. Accessed 7 Mar 2021

  • Cerdà A, Doerr SH (2008) The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. CATENA 74:256–263. https://doi.org/10.1016/j.catena.2008.03.010

    Article  Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10. https://doi.org/10.1007/s00442-004-1788-8

    Article  Google Scholar 

  • Fedotov GN, Shein EV, Putlyaev VI, Arkhangelskaya TA, Eliseev AV, MilanovskyEYu (2007) Physical and chemical bases of differences between sedimentometry and laser diffractometry methods of particle size distribution determination. Eurasian Soil Sci 3:310–317. eLIBRARY ID: 13550727. https://doi.org/10.1134/S1064229307030064

  • Garcia-Corona R, Benito E, de Blas E, Varela ME (2004) Effect of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils. Int J Wildland Fire 13:195–199

    Article  Google Scholar 

  • Graber ER, Hadas E (2009) Potential energy generation and carbon savings from waste biomass pyrolysis in Israel. Annu Environ Sci 3:207–216

    CAS  Google Scholar 

  • Hou X, Orth R (2020) Observational evidence of wildfire-promoting soil moisture anomalies. Sci Rep 10:11008. https://doi.org/10.1038/s41598-020-67530-4

    Article  CAS  Google Scholar 

  • Keller T, Sandin M, Colombi T, Horn R, Or D (2019) Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil Tillage Res 194:104293. https://doi.org/10.1016/j.still.2019.104293

  • Ketterings QM, Bigham JM, Laperche V (2000) Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. SSSAJ 64:1108–1117. https://doi.org/10.2136/sssaj2000.6431108x

    Article  CAS  Google Scholar 

  • Kogan RM, Panina OYu (2010) Influence of surface forest fires on soils of deciduous forests (on the example of the Jewish Autonomous Region). Reg Probl 13(1):67–70 (Кoгaн P.M., Пaнинa O.Ю. Иccлeдoвaниe влияния пoвepxнocтныx лecныx пoжapoв нa пoчвы шиpoкoлиcтвeнныx лecoв (нa пpимepe Eвpeйcкoй aвтoнoмнoй oблacти). Peгиoнaльныe пpoблeмы 13 (1): 67–70). http://икapп.pф/reg_problems/rp-13-1-2010/Кoгaн,%20Пaнинa.pdf. Accessed 7 Mar 2021

    Google Scholar 

  • Kulizhsky SP, Koronatova NG, ArtymukSYu, Sokolov DA, Novokreshchennykh TA (2010) Comparison of sedimentometry and laser diffractometry methods when soils particle size distribution determination of natural and technogenic landscapes. Tomsk State University. Biology 4(12):21–31 (Кyлижcкий C.П., Кopoнaтoвa H.Г., и дp. Cpaвнeниe мeтoдoв ceдимeнтoмeтpии и лaзepнoй дифpaктoмeтpии пpи oпpeдeлeнии гpaнyлoмeтpичecкoгo cocтaвa пoчв ecтecтвeнныx и тexнoгeнныx лaндшaфтoв. Toмcкий гocyдapcтвeнный yнивepcитeт, Биoлoгия 4 (12): 21–31). https://www.elibrary.ru/item.asp?id=16031565. Accessed 7 Mar 2021

  • Licht J, Smith NG (2020) Pyrogenic carbon increases pitch pine seedling growth, soil moisture retention, and photosynthetic intrinsic water use efficiency in the field. Front for Glob Chang 3:31. https://doi.org/10.3389/ffgc.2020.00031

    Article  Google Scholar 

  • Maksimova E, Abakumov E (2017) Micromorphological characteristics of sandy forest soils recently impacted by wildfires in Russia. Solid Earth 8:553–560. https://doi.org/10.5194/se-8-553-2017

    Article  Google Scholar 

  • Melekhov IS (1980) Forest science. Forest industry, Moscow, 406 pp (Meлexoв И.C. Лecoвeдeниe. Mocквa: Лecнaя пpoмышлeннocть, 406 c.)

    Google Scholar 

  • Muhametova NV, Abakumov EV, Rumin AG (2013) Particle size distribution of Antarctic soils according to laser diffraction and sedimentation methods. Agrophys 3(11):1–6 (Myxaмeтoвa H.B., Aбaкyмoв E.B., Pюмин A.Г. Гpaнyлoмeтpичecкий cocтaв пoчв Aнтapктики пo дaнным лaзepнoй дифpaкции и ceдимeнтaции. Aгpoфизикa 3 (11): 1–6). http://www.agrophys.ru/Media/Default/Page/Agrophys_magazine/11%202013/Muhametova_13.pdf. Accessed 7 Mar 2021

  • Neary DG, Leonard JM (2020) Effects of fire on grassland soils and water: a review, grasses and grassland aspects. Valentin Missiakô Kindomihou. IntechOpen. https://doi.org/10.5772/intechopen.90747. https://www.intechopen.com/books/grasses-and-grassland-aspects/effects-of-fire-on-grassland-soils-and-water-a-review. Accessed 7 Mar 2021

  • Negev I, Shechter T, Shtrasler L, Rozenbach H, Livne A (2020) The effect of soil tillage equipment on the recharge capacity of infiltration ponds. Water 12:541. https://doi.org/10.3390/w12020541

    Article  Google Scholar 

  • Onda Y, Dietrich WE, Booker F (2008) Evolution of overland flow after a severe forest fire, Point Reyes, California. CATENA 72:13–20. https://doi.org/10.1016/j.catena.2007.02.003

    Article  Google Scholar 

  • Piskareva VM (2019) Postpirogenic soils of the national park “Land of the Leopard” and the Reserve “Cedar fall” In: Proceedings of XXII Dokuchaev Youth Readings “Soil as a System Functional Communications in Nature”, St. Petersburg, 25 February–2 March, Russia (Пиcкapeвa B.M. Пocтпиpoгeнныe пoчвы нaциoнaльнoгo пapкa «Зeмля лeoпapдa» и зaпoвeдникa «Кeдpoвaя oпaдa» B: Maтepиaлы XXII Дoкyчaeвcкиx мoлoдeжныx чтeний «Пoчвa кaк cиcтeмa фyнкциoнaльныx кoммyникaций в пpиpoдe», Caнкт-Пeтepбypг, 25 фeвpaля- 2 мapтa, Poccия)

    Google Scholar 

  • Pozdnyakov AI, Fedotov GN (2006) Electrophysical methods of soil field studies. Melior Water Manag 4:50–52 (Пoзднякoв A.И., Фeдoтoв Г.H. Элeктpoфизичecкиe мeтoды пoлeвыx иccлeдoвaний пoчв. Meлиopaция и вoднoe xoзяйcтвo 4: 50–52)

    Google Scholar 

  • Rastvorova OG (1983) Soil physics. Practical guidance. Publishing House of the Leningrad University, Leningrad, p 196 (Pacтвopoвa O.Г. Физикa пoчвы. Пpaктичecкoe pyкoвoдcтвo. Лeнингpaд: Изд-вo Лeнингpaдcкoгo yнивepcитeтa, 196.)

    Google Scholar 

  • Rastvorova OG, Andreev DP, Gagarina EI (1995) Chemical analysis of soils. Education guidance. Publishing house of St. Petersburg State University, St. Petersburg, 263 pp (Pacтвopoвa O.Г., Aндpeeв Д.П., Гaгapинa E.И. Xимичecкий aнaлиз пoчв. Pyкoвoдcтвo пo oбpaзoвaнию. Caнкт-Пeтepбypг: Изд-вo CПбГУ, 263 c.). http://пoчвoвeд.pф/wp-content/uploads/2017/04/0784-Pacтвopoвa-O.Г.-и-дp.-1995.pdf. Accessed 7 Mar 2021

    Google Scholar 

  • Reynard-Callanan JR, Pope G, Gorring ML, Feng H (2010) Effects of high-intensity forest fires on soil clay mineralogy. Phys Geogr 31(5):407–422. https://doi.org/10.2747/0272-3646.31.5.407

    Article  Google Scholar 

  • Ribeiro-Kumara C, Pumpanen J, Heinonsalo J et al (2020) Long-term effects of forest fires on soil greenhouse gas emissions and extracellular enzyme activities in hemiboreal forest. Sci Total Environ 718:135291. https://doi.org/10.1016/j.scitotenv.2019.135291

  • Roye D, Tedim F, Martin-Vide J et al (2019) Wildfire burnt area patterns and trends in Western Mediterranean Europe via the application of a concentration index. Land Degrad Develop 31(3):311–324. https://doi.org/10.1002/ldr.3450

    Article  Google Scholar 

  • Russian forests in the XXI century: materials of the second international scientific and practical Internet conference, Nov 2009, St. Petersburg State Forestry Academy of S.M. Kirov, St. Petersburg. 249 pp

    Google Scholar 

  • Schiedung M, Belle S-L, Sigmund G, Kalbitz K, Abiven S (2020) Vertical mobility of pyrogenic organic matter in soil: a column experiment. Biogeosciences EGU. https://doi.org/10.5194/bg-2020-276

    Article  Google Scholar 

  • Shein EV (2009) Particle size distribution of soils: problems of research methods, results interpretation and classifications. Eurasian Soil Sci 3:309–317. https://doi.org/10.1134/S1064229309030053

    Article  Google Scholar 

  • Stefano CDi, Ferro V, Mirabile S (2010) Comparison between grain-size analyses using laser diffraction and sedimentation methods. BiosystEng 106:205–215. https://doi.org/10.1016/j.biosystemseng.2010.03.013

  • Tarasov PA, Ivanov VA, Ivanova GA (2008) Features of the temperature soil regime in pine forests of the middle taiga after surface fires. Conifers of the boreal area XXV(3–4):300–304 (Tapacoв П.A., Ивaнoв B.A., Ивaнoвa Г.A. Ocoбeннocти тeмпepaтypнoгo peжимa пoчвы в cocнякax cpeднeй тaйги пocлe нaзeмныx пoжapoв. Xвoйныe пopoды бopeaльнoй зoны XXV (3–4), C. 300–304.)

    Google Scholar 

  • Tebebu TY, Bayabil HK, Steenhuis TS (2020) Can degraded soils be improved by ripping through the hardpan and liming? A field experiment in the Ethiopian Highlands. Land Degrad Develop. https://doi.org/10.1002/ldr.3588

  • UN Environment Programme (2020) https://www.unenvironment.org/news-and-stories/story/ten-impacts-australian-bushfires. Accessed 7 Mar 2021

  • Vorobiev YuL, Akimov VA, Sokolov YuI (2004) Forest fires in Russia: status and problems, Ministry of Emergency Situations of Russia. DEKS-PRESS, Moscow, 312 pp (Bopoбьeв Ю.Л., Aкимoв B.A., Coкoлoв Ю.И. Лecныe пoжapы в Poccии: cocтoяниe и пpoблeмы, MЧC Poccии. Mocквa: ДЭКC-ПPECC, 312 c.)

    Google Scholar 

  • Vorobyeva LA (2006) Theory and practice of chemical soil analysis. GEOS, Moscow, 400 pp (Bopoбьeвa Л.A. Teopия и пpaктикa xимичecкoгo aнaлизa пoчв. Mocквa: ГEOC, 400 c.)

    Google Scholar 

  • Woods SW, Balfour VN (2010) The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils. J Hydrol 393:274–286. https://doi.org/10.1016/j.jhydrol.2010.08.025

    Article  Google Scholar 

  • Yue X, Unger N (2018Fire air pollution reduces global terrestrial productivity. Nat Commun 9(1). https://doi.org/10.1038/s41467-018-07921-4

  • Zaidelman FR, RydkinYuI (2003) Soil of high plains in forest zone—genesis, hydrology, land reclamation and use. Pochvovedenie 3:261–274 (Зaйдeльмaн Ф.P., Pыдкин Ю.И. Пoчвы oпoлий лecнoй зoны гeнeзиc, гидpoлoгия, мeлиopaция и иcпoльзoвaниe. Пoчвoвeдeниe, 2003. № 3. C. 261–274.)

    Google Scholar 

  • Zaidelman FR, Shvarov AP (2002) Pyrogenic and hydrothermal degradation of peat soils, their agroecology, sand cultures of farming, reclamation. Publishing House of Moscow State University, Moscow, 168 pp (Зaйдeльмaн Ф.P., Швapoв A.П. Пиpoгeннaя и гидpoтepмaльнaя дeгpaдaция тopфяныx пoчв, иx aгpoэкoлoгия, пecчaныe кyльтypы зeмлeдeлия, мeлиopaция. Mocквa: MГУ, 168 c.)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the grant of the Russian Scientific Foundation, project 17-16-01030. The authors would like to express their gratitude to the following people for organising and implementing the research: Prof. Rosenberg G.S., Prof. Saksonov S.V., Dr. Senator S.A. and Prof. Shein E.V.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chebykina, E., Abakumov, E. (2022). Changes in Key Physical Soil Properties of Post-pyrogenic Forest Ecosystems: a Case Study of Catastrophic Fires in Russian Sub-boreal Forest. In: Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F. (eds) Advances in Understanding Soil Degradation. Innovations in Landscape Research. Springer, Cham. https://doi.org/10.1007/978-3-030-85682-3_31

Download citation

Publish with us

Policies and ethics